Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064302    DOI: 10.1088/1674-1056/acc1d2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of magnetic field on expansion of ferrofluid-encapsulated microbubble

Zhiwei Du(杜芷玮), Fan Li(李凡), Ruiqi Pan(潘瑞琪), Runyang Mo(莫润阳), and Chenghui Wang(王成会)
Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
Abstract  Magnetic microbubbles (MMBs) have great potential applications in drug delivery and target therapy because they can be controlled by magnetic fields. In this paper, dynamic equations are derived by Lagrangian formalism and the behavior of MMBs subject to a combination field of magnetic and ultrasound field in an incompressible infinite fluid is analyzed numerically. The results show that the magnetic field can promote bubble expansion and hinder its translational motion, and both the enhancement and obstruction effects will weaken with the decrease of bubble size. The initial translational velocity has almost no effect on bubbles motion. Besides, the maximum expansion radius of MMBs increases with the ferrofluid shell thickness, while that of the common MBs is just the opposite. In addition, the periodic change of Levich viscous drag caused by the rebound leads to the step-like translational motion. Finally, the ferrofluid-shell model can be replaced by the model of non-magnetic microbubbles in magnetic liquid at high driving frequency.
Keywords:  magnetic microbubbles      ultrasound      magnetic field      translational motion  
Received:  16 November 2022      Revised:  19 February 2023      Accepted manuscript online:  07 March 2023
PACS:  43.25.+y (Nonlinear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  47.55.dd (Bubble dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074238, 11974232, and 11774212).
Corresponding Authors:  Runyang Mo     E-mail:  mmrryycn@snnu.edu.cn

Cite this article: 

Zhiwei Du(杜芷玮), Fan Li(李凡), Ruiqi Pan(潘瑞琪), Runyang Mo(莫润阳), and Chenghui Wang(王成会) Effect of magnetic field on expansion of ferrofluid-encapsulated microbubble 2023 Chin. Phys. B 32 064302

[1] Sciallero C, Balbi L Paradossi G and Trucco A2016 R. Soc. Open Sci. 3 160063
[2] Owen J, Pankhurst Q and Stride E2012 Int. J. Hyperth. 28 362
[3] Beguin E, Bau L, Shrivastava S and Stride E2019 ACS Appl. Mater. Interfaces 11 1829
[4] Zhao X, Quinto-Su P A and Ohl C D2009 Phys. Rev. Lett. 102 024501
[5] Vlaskou D, Plank C and Mykhaylyk O2013 Methods Mol. Biol. 948 205
[6] Wang S Y, Guo X X, Ren L L, Wang B, Hou L X, Zhou H, Gao Q C, Gao Y and Wang L H2020 Ultrason. Sonochem. 67 105188
[7] Qian B, Zhao Q and Ye X F2020 J. Cardiovasc. Pharmacol. 76 414
[8] Duan L, Yang F, He W, Song L N, Qiu F, Xu N, Xu L, Zhang Y, Hua Z C and Gu N2016 Adv. Funct. Mater. 26 8313
[9] Liu Y Y, Lai X S, Zhu Y, Guo F J, Su L L, Arkin G, He T Z, Xu J F and Ran H T2022 Int. J. Pharm. 616 121299
[10] Yan L P, Miao W and Li D D2020 J. Nanosci. Nanotech. 20 6087
[11] Liu Z, Lammers T, Ehling J, Fokong S, Bornemann J, Kiessling F and Gätjens J2011 Biomaterials 32 6155
[12] Marie D S V, Barnsley L C, Carugo D, Owen J, Coussios C C and Stride E2019 Ultrasound Med. Biol. 45 1151
[13] Wang S Y, Guo X X, Xiu W J, Liu Y, Ren L L, Xiao H X, Yang F, Gao Y, Xu C J and Wang L H2020 Sci. Adv. 6 8204
[14] Wang L C, Wang J N, Hao J N, Dong Z L, Wu J R, Shen G F, Ying T, Feng L Z, Cai X J, Liu Z and Zheng Y Y2021 Adv. Mater. 33 2105351
[15] Zhang B H, Wu H Y, Goel L, Kim H, Peng C, Kim J, Dayton P A, Gao Y and Jiang X N2021 Ultrasonics 116 106487
[16] Yang F, Li Y X, Chen Z P, Zhang Y, Wu J R and Gu N2009 Biomaterials 30 3882
[17] Owen J, Pankhurst Q A and Stride E2012 Int. J. Hyperthermia 28 362
[18] Stride E, Porter C, Prieto A G and Pankhurst Q2009 Ultrasound Med. Biol. 35 861
[19] Church C C1995 J. Acoust. Soc. Am. 97 1510
[20] Doinikov A A and Dayton P A.2006 J. Acoust. Soc. Am. 120 661
[21] Doinikov A A and Dayton P A.2007 J. Acoust. Soc. Am. 121 3331
[22] Lind S J.2014 Phys. Fluids 26 061901
[23] Chen J, Zhao L X, Wang C H and Mo R Y2021 J. Magn. Magn. Mater 538 168293
[24] Zhao L X, Shi H M, Bello I, Hu J, Wang C H and Mo R Y2022 Chin. Phys. B 31 034302
[25] Mulvana H, Eckersley R J, Tang M X, Pankhurst Q and Stride E2012 Ultrasound Med. Biol. 38 864
[26] Zhu G P, Nguyen N T, Ramanujan R V and Huang X Y2011 Langmuir 27 14834
[27] Malvar S, Gontijo R G and Cunha F R2018 J. Eng. Math. 108 143
[28] Doinikov A A2002 Phys. Fluids 14 1420
[29] Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Wang X and Zhao G Y2020 Chin. Phys. B 29 034303
[30] Ken H, Hiroshi N, Keiko S, Shigeo M and Yoshio T2022 Micron 160 103306
[1] Measurements of Majorana transition frequency shift in caesium atomic fountain clocks
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Fan Yang(杨帆), Yang Bai(白杨), Yong Guan(管勇), Si-Chen Fan(范思晨), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2023, 32(4): 040602.
[2] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[3] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[4] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[5] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[6] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[9] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[10] Increasing the ·OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution
Chao Li(李超), De-Long Xu(徐德龙), Wen-Quan Xie(谢文泉), Xian-Hui Zhang(张先徽), and Si-Ze Yang(杨思泽). Chin. Phys. B, 2022, 31(4): 048706.
[11] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[12] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[13] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[14] Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer
Yanqiu Zhang(张艳秋), Hao Zhang(张浩), Tianyu Sun(孙天宇), Ting Pan(潘婷), Peiguo Wang(王佩国), and Xiqi Jian(菅喜岐). Chin. Phys. B, 2021, 30(7): 078704.
[15] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
No Suggested Reading articles found!