Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040502    DOI: 10.1088/1674-1056/aca9c3
GENERAL Prev   Next  

Unstable periodic orbits analysis in the Qi system

Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红)
Department of Physics, North University of China, Taiyuan 030051, China
Abstract  We use the variational method to extract the short periodic orbits of the Qi system within a certain topological length. The chaotic dynamical behaviors of the Qi system with five equilibria are analyzed by the means of phase portraits, Lyapunov exponents, and Poincaré maps. Based on several periodic orbits with different sizes and shapes, they are encoded systematically with two letters or four letters for two different sets of parameters. The periodic orbits outside the attractor with complex topology are discovered by accident. In addition, the bifurcations of cycles and the bifurcations of equilibria in the Qi system are explored by different methods respectively. In this process, the rule of orbital period changing with parameters is also investigated. The calculation and classification method of periodic orbits in this study can be widely used in other similar low-dimensional dissipative systems.
Keywords:  chaos      periodic orbits      bifurcation      Qi system  
Received:  26 September 2022      Revised:  15 November 2022      Accepted manuscript online:  08 December 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12205257, 11647085, and 11647086), the Shanxi Province Science Foundation for Youths (Grant No. 201901D211252), Fundamental Research Program of Shanxi Province (Grant No. 202203021221095), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi of China (Grant Nos. 2019L0505, 2019L0554, and 2019L0572).
Corresponding Authors:  Chengwei Dong, Hantao Li     E-mail:  dongchengwei@tsinghua.org.cn;lihantao@nuc.edu.cn

Cite this article: 

Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红) Unstable periodic orbits analysis in the Qi system 2023 Chin. Phys. B 32 040502

[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Chen G and Ueta T 1999 Int. J. Bifurcat. Chaos 9 1465
[3] Lü J and Chen G 2002 Int. J. Bifurcat. Chaos 12 659
[4] Čelikovský S and Chen G 2002 Int. J. Bifurcat. Chaos 12 1789
[5] Čelikovský S and Chen G 2005 Chaos Soliton. Fract. 26 1271
[6] Zhang D, Shi J Q, Sun Y, Yang X H and Ye Lei 2019 Acta Phys. Sin. 68 240502 (in Chinese)
[7] Yang Q, Chen G and Huang K 2007 Int. J. Bifurcat. Chaos 17 3929
[8] Le X, Zhang S and Zeng Y 2018 Chin. J. Phys. 56 2381
[9] Dadras S, Momeni H R and Qi G 2010 Nonlinear Dyn. 62 391
[10] Zolfaghari-Nejad M, Charmi M and Hassanpoor H 2022 Complexity 2022 4488971
[11] Mobayen S, Volos C K, Kaar S and Avuolu N 2018 Nonlinear Dyn. 91 939
[12] Ding P F, Feng X Y and Wu C M 2020 Chin. Phys. B 29 108202
[13] Qi G, Chen G, Du S, Chen Z and Yuan Z 2005 Physica A 352 295
[14] Vaidyanathan S 2012 Adaptive controller and synchronizer design for the Qi-Chen chaotic system (Berlin: Springer Berlin Heidelberg)
[15] Luo R 2008 Phys. Lett. A 372 648
[16] Song L, Yang J and Xu S 2010 Nonlinear Anal. 72 2326
[17] Li J F, Li N, Liu Y P and Gan Y 2008 Acta Phys. Sin. 58 779 (in Chinese)
[18] Qi G and Zhang J 2017 Chaos Soliton. Fract. 99 7
[19] Wu W, Chen Z and Yuan Z 2009 Chaos Soliton. Fract. 41 2756
[20] Harrington H A and Gorder R A V 2017 Nonlinear Dyn. 88 715
[21] Esen O, Choudhury A G and Guha P 2016 Int. J. Bifurcat. Chaos 26 1650215
[22] Wang J, Chen Z, Che G and Yuan Z 2008 Int. J. Bifurcat. Chaos 18 3309
[23] Wang J Z, Chen Z Q and Yuan Z Z 2006 Chin. Phys. 15 1216
[24] Jia H Y, Chen Z Q and Yuan Z Z 2009 Acta Phys. Sin. 58 4469 (in Chinese)
[25] Chen Z, Yang Y, Qi G and Yuan Z 2007 Phys. Lett. A 360 696
[26] Wu W and Chen Z 2010 Nonlinear Dyn. 60 615
[27] Artuso R, Aurell E and Cvitanovic P 1990 Nonlinearity 3 325
[28] Artuso R, Aurell E and Cvitanovic P 1990 Nonlinearity 3 361
[29] Lan Y and Cvitanović P 2004 Phys. Rev. E 69 16217
[30] Dong C 2022 Fractal and Fractional 6 190
[31] Lan Y and Li Y C 2008 Nonlinearity 21 2801
[32] Wang D, Wang P and Lan Y 2018 Phys. Rev. E 98 042204
[33] Azimi S, Ashtari O and Schneider T M 2022 Phys. Rev. E 105 014217
[34] Boghosian B M, Brown A, Lätt J, Tang H, Fazendeiro L M and Coveney P V 2011 Philos. Trans. Roy. Soc. A 369 2345
[35] Hao B L and Zheng W M 1998 Applied Symbolic Dynamics and Chaos (Singapore: World Scientific) pp. 6-10
[36] Cvitanović P, Artuso R, Mainieri R, Tanner G and Vattay G 2012 Chaos: Classical and Quantum (Copenhagen: Niels Bohr Institute)
[37] Press W H, Teukolsky S A, Veterling W T and Flannery B P 1992 Numerical Recipes in C (Cambridge: Cambridge University Press)
[38] Galias Z and Tucker W 2011 Int. J. Bifurcat. Chaos 21 551
[39] Strogatz S H 2000 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Cambridge: Perseus Books Publishing) pp. 312-313
[40] Wiggins S, Wiggins S and Golubitsky M 2003 Introduction to applied nonlinear dynamical systems and chaos (New York: Springer)
[41] Guckenheimer J and Holms P 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector (New York: Springer)
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[4] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[9] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[10] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[11] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[12] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[13] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
No Suggested Reading articles found!