Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030506    DOI: 10.1088/1674-1056/acad6c
GENERAL Prev   Next  

All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems

Shubin Wang(王树斌)1,2,†, Xin Zhang(张鑫)3, Guoli Ma(马国利)3, and Daiyin Zhu(朱岱寅)1,‡
1 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 Flight College, Binzhou University, Binzhou 256603, China;
3 Institute of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
Abstract  In high-speed optical communication systems, in order to improve the communication rate, the distance between pulses must be compressed, which will cause the problem of the interaction between optical pulses in optical communication systems, which has been widely concerned by researches. In this paper, the bilinear method will be used to analyze the coupled high-order nonlinear Schrödinger equations and obtain their three-soliton solutions. Then, the influence of the relevant parameters in the three-soliton solution on the soliton inelastic interaction is studied. In addition, the constraint conditions of each parameter in the three-soliton solution are analyzed, the inelastic interaction properties of optical solitons under different parameter conditions are obtained, and the relevant laws of the inelastic interaction of solitons are studied. The results will have potential applications in the soliton control, all-optical switching and optical computing.
Keywords:  optical solitons      solitons interaction      nonlinear Schrödinger equation      soliton solution  
Received:  24 November 2022      Revised:  06 December 2022      Accepted manuscript online:  21 December 2022
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875009 and 11905016).
Corresponding Authors:  Shubin Wang, Daiyin Zhu     E-mail:  Wshubin2000@126.com;zhudy@nuaa.edu.cn

Cite this article: 

Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅) All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems 2023 Chin. Phys. B 32 030506

[1] Yu W T, Luan Z T, Zhang H X and Liu W J 2022 Chaos Soliton Fract. 157 111816
[2] Wang T Y, Zhou Q and Liu W J 2022 Chin. Phys. B 31 020501
[3] Liu X Y, Zhang H X and Liu W J 2022 Appl. Math. Model. 102 305
[4] Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese)
[5] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 10202
[6] Li M, Wang B T, Xu T and Shui J J 2020 Acta Phys. Sin. 69 010502 (in Chinese)
[7] Ma G L, Zhao J B, Zhou Q, Biswas A and Liu W J 2021 Nonlinear Dyn. 106 2479
[8] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J and Biswas A 2022 Chin. Phys. Lett. 39 044202
[9] Wang L L and Liu W J 2020 Chin. Phys. B 29 070502
[10] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[11] Chen J G, Luan Z T, Zhou Q, Alzahrani A K, Biswas A and Liu W J 2020 Nonlinear Dyn. 100 2817
[12] Liu W J, Zhang Y J, Wazwaz A M and Zhou Q 2019 App. Math. Comput. 361 325
[13] Liu X Y, Triki H, Zhou Q, Mirzazadeh M, Liu W J, Biswas A and Belic M 2019 Nonlinear Dyn. 95 143
[14] Liu X Y, Triki H, Zhou Q, Liu W J and Biswas A 2018 Nonlinear Dyn. 94 703
[15] Liu W J, Yang C Y, Liu M L, Yu W T, Zhang Y J and Lei M 2017 Phys. Rev. E 96 042201
[16] Liu W J, Pan N, Huang L G and Lei M 2014 Nonlinear Dyn. 78 755
[17] Wang S B, Ma G L, Zhang X and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[18] Zhang X M, Qin Y H, Ling L M and Zhao L C 2021 Chin. Phys. Lett. 38 090201
[19] Rizvi S T R, Bibi I, Younis M and Bekir A 2021 Chin. Phys. B 30 010502
[20] Chen M and Wang Z 2020 Chin. Phys. B 29 120201
[21] Song L J, Xu X Y and Wang Y 2020 Chin. Phys. B 29 064211
[22] Wang B, Zhang Z and Li B 2020 Chin. Phys. Lett. 37 030501
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[3] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[4] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[5] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[6] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[7] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[8] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[9] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[10] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[11] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[12] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[13] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[14] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[15] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method
Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202.
No Suggested Reading articles found!