|
|
Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation |
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利)† |
College of Sciences, Nanjing Agricultural University, Nanjing 210000, China |
|
|
Abstract By employing the complexification method and velocity resonant principle to $N$-solitons of the $(2+1)$-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt (KDKK) equation, we obtain the soliton molecules, $T$-breather molecules, $T$-breather-$L$-soliton molecules and some interaction solutions when $N\leq6$. Dynamical behaviors of these solutions are discussed analytically and graphically. The method adopted can be effectively used to construct soliton molecules and $T$-breather molecules of other nonlinear evolution equations. The results obtained may be helpful for experts to study the related phenomenon in oceanography and atmospheric science.
|
Received: 07 July 2022
Revised: 08 August 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
02.30.Ik
|
(Integrable systems)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
Fund: Project supported by Jiangsu Provincial Natural Science Foundation of China (Grant Nos. BK20221508, 11775116, BK20210380, and JSSCBS20210277), SRT (Grant No. 202210307165Y), and Jiangsu Qinglan High-level Talent Project. |
Corresponding Authors:
Hongli An
E-mail: kaixinguoan@163.com
|
Cite this article:
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利) Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation 2023 Chin. Phys. B 32 030505
|
[1] Whitham G B 1974 Linear and Nonlinear Waves (New York: John Wiley & Sons) p. 120 [2] Kundu P K 1990 Fluid Mechanics (San Diego: Academic Press) p. 155 [3] Lamb H 1945 Hydrodynamics (New York: Cambridge University Press) p. 1932 [4] Yang X Y, Fan R and Li B 2020 Phys. Scripta 95 045213 [5] Peng W Q, Tian S F and Zhang T T 2018 Phys. Lett. A 382 2701 [6] Wang H, Tian S F, Zhang T T and Chen Y 2019 Front. Math. China 14 631 [7] Lan Z Z, Gao Y T, Yang J W, Su C Q and Wang Q M 2016 Mod. Phys. Lett. B 30 1650265 [8] Yang T Y and Ma W X 2016 Int. J. Mod. Phys. B 30 1640028 [9] Lü X and Li J 2014 Nonlinear Dyn. 77 135 [10] Xin X P, Liu X Q and Zhang L L 2010 Appl. Math. Comput. 215 3669 [11] Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355 [12] Konopelehenko B and Dubrovsky V 1984 Phys. Lett. A 102 15 [13] Zhang H Q and Ma W X 2017 Nonlinear Dyn. 87 2305 [14] Li X, Wang Y, Chen M D and Li B 2017 Adv. Math. Phys. 2017 1743789 [15] An H L, Feng D L and Zhu H X 2019 Nonlinear Dyn. 98 1275 [16] Feng L L, Tian S F, Yan H, Wang L and Zhang T T 2016 Eur. Phys. J. Plus. 131 241 [17] Liu W H, Zhang Y F and Shi D D 2019 Commun. Theor. Phys. 71 670 [18] Deng G F, Gao Y T, Ding C C and Su J J 2020 Chaos Soliton. Fract. 140 110085 [19] Yuan P S, Qi J X, Li Z L and An H L 2020 Chin. Phys. B 30 040503 [20] Zhang C Y, Gao Y T, Li L Q and Ding C C 2020 Nonlinear Dyn. 102 1773 [21] Ma H C, Cheng Q X and Deng A P 2020 Commun. Theor. Phys. 72 095001 [22] Barashenkov I V, Smirnov Y S and Alexeeva N V 1998 Phys. Rev. E 57 2350 [23] Barashenkov I V and Zemlyanaya E V 1999 Phys. Rev. Lett. 83 2568 [24] Akhmediev N and Ankiewicz A 2000 Chaos 10 600 [25] Stratmann M, Pagel T and Mitschke F 2005 Phys. Rev. Lett. 95 143902 [26] Weng W, Bouchand R, Lucas E, Obrzud E, Herr T and Kippenberg T 2019 Nat. Commun. 11 2402 [27] Rohrmann P, Hause A and Mitschke F 2012 Sci. Rep. 2 866 [28] Herink G, Kurtz F, Jalali B, Solli D and Ropers C 2017 Science 356 50 [29] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905 [30] Wang C, Wang L, Li X H, et al. 2019 Nanotechnology 30 025204 [31] Wang Z Q, Nithyanandan K, Coillet A, Tchofo-Dinda P and Grelu P 2019 Nat. Commun. 10 830 [32] Lakomy K, Nath R and Santos L 2012 Phys. Rev. A 86 013610 [33] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763 [34] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240 [35] Crasovan L C, Kartashov Y V, Mihalache D, Torner L and Kivshar Y S 2003 Phys. Rev. E 67 046610 [36] Yin C Y and Berloff N G 2011 Phys. Rev. A 83 051605 [37] Lou S Y 2020 J. Phys. Commun. 4 041002 [38] Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271 [39] Yan Z and Lou S Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105425 [40] Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168 [41] Cui C J, Tang X Y and Cui Y J 2020 Appl. Math. Lett. 102 106109 [42] Zhang Z, Yang X Y and Li B 2020 Nonlinear Dyn. 100 1551 [43] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501 [44] Dong J J, Li B and Yuen M W 2020 Commun. Theor. Phys. 72 075501 [45] Hirota R 2004 The Direct Method in Soliton Theory (NewYork: Cambridge University Press) [46] Ablowitza M J and Satsuma J 1978 J. Math. Phys. 19 2180 [47] Satsuma J and Ablowitz M J 1979 J. Math. Phys. 20 1496 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|