Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 014101    DOI: 10.1088/1674-1056/ac6b22
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface

Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆)
Air and Missile Defend College, Air Force Engineering University of China, Xi'an 710051, China
Abstract  Two substrate integrated waveguide (SIW) cavity antenna arrays based on metasurface are proposed in this paper. By rotating the metasurface element, circularly polarized and high gain antennas are achieved respectively. Firstly, multi-mode resonance theory is employed to broaden the bandwidth of the slot antenna. And then, an SIW cavity composed of 4×4 cornercut elements is added on the top of the slot antenna to achieve the circular polarization and improve the front-to-back ratio. Thirdly, the metasurface elements are sequentially rotated and a high gain antenna with 2-dBi enhancement on average in the operation band is obtained. Based on the two antenna units, two 2×2 antenna arrays are designed. The circularly polarized and high gain antenna arrays are both fabricated to verify the correctness. Furthermore, the novel wideband phase shifter is employed in the circularly polarized antenna to obtain an operating bandwidth of 38% (4.05 GHz-5.95 GHz) and AR bandwidth of 24.9% (4.4 GHz-5.65 GHz). The bandwidth of the high gain antenna can reach 42.7% (3.95 GHz-6.1 GHz) and with the gain enhancement of 2 dBi compared with that of the circularly polarized antenna. The gain remains steady in most of operating band within a variation of 1 dBi. It is remarkable that the rotating of the metasurface element has a great influence on the antenna performance, which provides a new explication for the multi-function antenna design.
Keywords:  substrate integrated waveguide (SIW)      cavity antenna      metasurface      high gain      circularly polarized  
Received:  11 February 2022      Revised:  24 April 2022      Accepted manuscript online:  28 April 2022
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871394).
Corresponding Authors:  Guang-Ming Wang     E-mail:  wgming01@sina.com

Cite this article: 

Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆) High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface 2023 Chin. Phys. B 32 014101

[1] Ding W, Chen Y H and Li Z Y 2014 Chin. Phys. B 23 037301
[2] Tian C, Jiao Y C, Zhao G and Wang H 2018 IEEE Anten. Wirel. Propag. Lett. 16 1561
[3] Wang L J, Chen Q H, Yu F L and Gao X 2018 Chin. Phys. B 27 087802
[4] Nakmouche M F, Allam A M, Fawzy D E and Abdalla M 2021 Prog. Electromagn. Res. Lett. 101 117
[5] Lin F H and Chen Z N 2017 IEEE Trans. Anten. Propag. 65 1706
[6] Nie N S, Yang X S, Chen Z N and Wang B Z 2020 IEEE Trans. Anten. Propag. 68 665
[7] Yu Y Q, Fan Y W and Wang X Y 2020 Chin. Phys. B 29 118402
[8] Liu K Y, Wang G M, Cai T, Li H P and Li T Y 2021 IEEE Trans. Anten. Propag. 69 3349
[9] Xie P, Wang G M, Li H P, Liang J G and Gao X J 2020 IEEE Trans. Anten. Propag. 68 3213
[10] Zhang H L, Hu B J and Zhang X Y 2012 Chin. Phys. B 21 027701
[11] Ta S X and Park I 2017 IEEE Anten. Wirel. Propag. Lett. 16 1932
[12] Wu J, Cheng Y J and Fan Y 2016 IEEE Trans. Anten. Propag. 64 535
[13] Ta S X, Kiem N K and Chien D N 2019 Prog. Electromagn. Res. C 97 57
[14] Yu Z, Shen Z X and Feng Y J 2014 Chin. Phys. B 23 034101
[15] Guan D F, Qian Z P, Zhang Y S and Cai Y 2014 IEEE Anten. Wirel. Propag. Lett. 13 423
[16] Mbaye M, Talbi L, Louati S, Hettak K and Boutayeb H 2022 Prog. Electromagn. Res. M 107 79
[17] Wu G C, Wang G M, Fu X L, Liang J G and Bai W X 2017 Chin. Phys. B 26 024102
[18] Cheng T, Jiang W, Gong S X and Yu Y Q 2019 IEEE Anten. Wirel. Propag. Lett. 18 936
[19] Cai Y, Zhang Y S, Ding C and Qian Z P 2017 IEEE Trans. Anten. Propag. 65 3465
[20] Li T and Chen Z N 2018 IEEE Trans. Anten. Propag. 66 6742
[21] Xie P, Wang G M, Zong B F and Zou X J 2021 Chin. Phys. B 30 084103
[22] Hou H S, Wang G M, Li H P, Guo W L, Li T J and Cai T 2017 Chin. Phys. B 26 057701
[23] Li H P, Wang G M, Cai T, Liang J G and Gao X J 2018 IEEE Trans. Anten. Propag. 66 5121
[24] Li T and Chen Z N 2018 IEEE Trans. Anten. Propag. 66 2862
[25] Li Y B, Li A B, Cu i T J and Sievenpiper D F 2018 IEEE Trans. Anten. Propag. 66 6408
[26] Xu H X, Wang S J, Wang C H, Wang M Z, Wang Y Z and Peng Q 2017 IEEE Trans. Anten. Propag. 65 7378
[27] Li C F, Zhu X W, Liu P F, Yu C and Hong W 2019 IEEE Anten. Wirel. Propag. Lett. 18 1208
[28] Yang W C, Chen S, Che W Q, Xue Q and Meng Q 2018 IEEE Trans. Anten. Propag. 66 4918
[29] Wu T, Chen J and Wu P F 2020 AEU-Int. J. Electron. Commun. 127 153440
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[6] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[15] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
No Suggested Reading articles found!