|
|
A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors |
Yan-Xia Tang(唐妍霞)1,2, Abdul Jalil M Khalaf3, Karthikeyan Rajagopal4,5, Viet-Thanh Pham6, Sajad Jafari7, Ye Tian(田野)1,2 |
1. College of Science, Hebei North University, Zhangjiakou 075000, China;
2. Engineering Technology Research Center of Population Health Informatization in Hebei Province, Zhangjiakou 075000, China;
3. Department of Mathematics, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq;
4. Department of Electrical and Communication Engineering, the PNG University of Technology, Lae;
5. Centre for Nonlinear Dynamics, Defense University, Ethiopia;
6. Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
7. Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413, Iran |
|
|
Abstract In this paper, we introduce a new two-dimensional nonlinear oscillator with an infinite number of coexisting limit cycles. These limit cycles form a layer-by-layer structure which is very unusual. Forty percent of these limit cycles are self-excited attractors while sixty percent of them are hidden attractors. Changing this new system to its forced version, we introduce a new chaotic system with an infinite number of coexisting strange attractors. We implement this system through field programmable gate arrays.
|
Received: 09 September 2017
Revised: 07 December 2017
Accepted manuscript online:
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Ac
|
(Low-dimensional chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
Corresponding Authors:
Viet-Thanh Pham
E-mail: phamvietthanh@tdt.edu.vn
|
Cite this article:
Yan-Xia Tang(唐妍霞), Abdul Jalil M Khalaf, Karthikeyan Rajagopal, Viet-Thanh Pham, Sajad Jafari, Ye Tian(田野) A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors 2018 Chin. Phys. B 27 040502
|
[1] |
Leonov G A and Kuznetsov N V 2013 Int. J. Bifur. Chaos 23 1330002
|
[2] |
Leonov G, Kuznetsov N and Mokaev T 2015 Commun. Nonlinear Sci. Num. Simul. 28 166
|
[3] |
Leonov G A, Kuznetsov N V and Mokaev T N 2015 Eur. Phys. J. Special Topics 224 1421
|
[4] |
Dang X Y, Li C B, Bao B C and Wu H G 2015 Chin. Phys. B 24 050503
|
[5] |
Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V and Leonov G A 2016 Phys. Rep. 637 1
|
[6] |
Wei Z, Moroz I, Sprott J C, Wang Z and Zhang W 2017 Int. J. Bifur. Chaos 27 1730008
|
[7] |
Wei Z, Moroz I, Sprott J, Akgul A and Zhang W 2017 Chaos 27 033101
|
[8] |
Wei Z, Yu P, Zhang W and Yao M 2015 Nonlinear Dyn. 82 131
|
[9] |
Leonov G, Kuznetsov N and Vagaitsev V 2011 Phys. Lett. A 375 2230
|
[10] |
Leonov G, Kuznetsov N and Vagaitsev V 2012 Physica D:Nonlinear Phenomena 241 1482
|
[11] |
Leonov G, Kuznetsov N, Kiseleva M, Solovyeva E and Zaretskiy A 2014 Nonlinear Dyn. 77 277
|
[12] |
Sharma P R, Shrimali M D, Prasad A, Kuznetsov N and Leonov G 2015 Int. J. Bifur. Chaos 25 1550061
|
[13] |
Nazarimehr F, Saedi B, Jafari S and Sprott J 2017 Int. J. Bifur. Chaos 27 1750037
|
[14] |
Nazarimehr F, Jafari S, Golpayegani S M R H and Sprott J 2017 Int. J. Bifur. Chaos 27 1750023
|
[15] |
Chaudhuri U and Prasad A 2014 Phys. Lett. A 378 713
|
[16] |
Prasad A 2015 Int. J. Bifur. Chaos 25 1530005
|
[17] |
Jafari M A, Mliki E, Akgul A, Pham V T, Kingni S T, Wang X and Jafari S 2017 Nonlinear Dyn. 88 2303
|
[18] |
Feng Y, Pu J and Wei Z 2015 Eur. Phys. J. 224 1593
|
[19] |
Feng Y and Wei Z 2015 Eur. Phys. J. 224 1619
|
[20] |
Wei Z, Zhang W, Wang Z and Yao M 2015 Int. J. Bifur. Chaos 25 1550028
|
[21] |
Wei Z, Pham V T, Kapitaniak T and Wang Z 2016 Nonlinear Dyn. 85 1635
|
[22] |
Kapitaniak T and Leonov G A 2015 Eur. Phys. J. 224 1405
|
[23] |
Dudkowski D, Prasad A and Kapitaniak T 2015 Phys. Lett. A 379 2591
|
[24] |
Pisarchik A N and Feudel U 2014 Phys. Rep. 540 167
|
[25] |
Jafari S, Sprott J C and Hashemi Golpayegani S M R 2013 Phys. Lett. A 377 699
|
[26] |
Wei Z 2011 Phys. Lett. A 376 102
|
[27] |
Wei Z, Wang R and Liu A 2014 Math. Comput. Simul. 100 13
|
[28] |
Molaie M, Jafari S, Sprott J C, Hashemi Golpayegani S M R 2013 Int. J. Bifur. Chaos 23 1350188
|
[29] |
Wang X and Chen G 2012 Commun. Nonlinear Sci. Num. Simul. 17 1264
|
[30] |
Wei Z and Zhang W 2014 Int. J. Bifur. Chaos 24 1450127
|
[31] |
Wei Z, Moroz I, Wang Z, Sprott J C and Kapitaniak T 2016 Int. J. Bifur. Chaos 26 1650125
|
[32] |
Barati K, Jafari S, Sprott J C and Pham V T 2016 Int. J. Bifur. Chaos 26 1630034
|
[33] |
Pham V T, Volos C, Kapitaniak T, Jafari S and Wang X 2018 Int. J. Electron. 105 385
|
[34] |
Pham V T, Jafari S and Volos C 2017 Optik 131 343
|
[35] |
Pham V T, Jafari S, Volos C, Gotthans T, Wang X and Hoang D V 2017 Optik 130 365
|
[36] |
Jafari S, Sprott J and Molaie M 2016 Int. J. Bifur. Chaos 26 1650098
|
[37] |
Jafari S, Sprott J C, Pham V T, Volos C and Li C 2016 Nonlinear Dyn. 86 1349
|
[38] |
Wei Z, Sprott J and Chen H 2015 Phys. Lett. A 379 2184
|
[39] |
Wei Z, Zhang W and Yao M 2015 Nonlinear Dyn. 82 1251
|
[40] |
Wang L 2009 Nonlinear Dyn. 56 453
|
[41] |
Muñoz-Pacheco J, Tlelo-Cuautle E, Toxqui-Toxqui I, Sánchez-López C and Trejo-Guerra R 2014 Int. J. Electron. 101 1559
|
[42] |
Tlelo-Cuautle E, Rangel-Magdaleno J, Pano-Azucena A, Obeso-Rodelo P and Nunez-Perez J 2015 Commun. Nonlinear Sci. Num. Simul. 27 66
|
[43] |
Lai Q and Chen S 2016 Int. J. Bifur. Chaos 26 1650177
|
[44] |
Kengne J, Negou A N and Tchiotsop D 2017 Nonlinear Dyn. 88 2589
|
[45] |
Sharma P, Shrimali M, Prasad A, Kuznetsov N and Leonov G 2015 Eur. Phys. J. 224 1485
|
[46] |
Bao B, Jiang T, Xu Q, Chen M, Wu H and Hu Y 2016 Nonlinear Dyn. 86 1711
|
[47] |
Bao B C, Xu Q, Bao H and Chen M 2016 Electron. Lett. 52 1008
|
[48] |
Bao B, Bao H, Wang N, Chen M and Xu Q 2017 Chaos, Solitons & Fractals 94 102
|
[49] |
Bao B, Jiang T, Wang G, Jin P, Bao H and Chen M 2017 Nonlinear Dyn. 89 1157
|
[50] |
Sprott J C 2010 Elegant chaos:algebraically simple chaotic flows (Singapore:World Scientific)
|
[51] |
Van der Pol B 1920 Radio Rev. 1 701
|
[52] |
Van der Pol B 1926 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 978
|
[53] |
Cartwright M L and Littlewood J E 1945 Journal of the London Mathematical Society 1 180
|
[54] |
Levinson N 1949 Ann. Math. 50 127
|
[55] |
Yan S L 2016 Chin. Phys. B 25 090504
|
[56] |
Yang W, Joshi A and Xiao M 2005 Phys. Rev. Lett. 95 093902
|
[57] |
Qi G Y and Matondo S B 2014 Chin. Phys. B 23 050507
|
[58] |
Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys. B 22 010504
|
[59] |
Liu Y and Tong X J 2012 Chin. Phys. B 21 090506
|
[60] |
Liu S B, Sun J, Xu Z Q and Liu J S 2009 Chin. Phys. B 18 5219
|
[61] |
Min F H, Shao S Y, Huang W D and Wang E R 2015 Chin. Phys. Lett. 32 030503
|
[62] |
Kengne J, Jafari S, Njitacke Z, Khanian M Y A and Cheukem A 2017 Commun. Nonlinear Sci. Num. Simul. 52 62
|
[63] |
Pham V T, Volos C, Jafari S and Kapitaniak T 2017 J. Circu. Syst. Comput. 18 50066
|
[64] |
Rajagopal K, Akgul A, Jafari S, Karthikeyan A and Koyuncu I 2017 Chaos, Solitons & Fractals 103 476
|
[65] |
Rajagopal K, Akgul A, Jafari S and Aricioglu B 2018 Nonlinear Dyn. 91 957
|
[66] |
Kahn P B and Zarmi Y 2014 Nonlinear dynamics:exploration through normal forms:Courier Corporation
|
[67] |
Tlelo-Cuautle E, Pano-Azucena A, Rangel-Magdaleno J, Carbajal-Gomez V and Rodriguez-Gomez G 2016 Nonlinear Dyn. 85 2143
|
[68] |
Tlelo-Cuautle E, Carbajal-Gomez V, Obeso-Rodelo P, Rangel-Magdaleno J and Nuñez-Perez J C 2015 Nonlinear Dyn. 82 1879
|
[69] |
Tlelo-Cuautle E, Rangel-Magdaleno J, Pano-Azucena A, Obeso-Rodelo P and Nuñez-Perez J C 2015 Commun. Nonlinear Sci. Num. Simul. 27 66
|
[70] |
Rajagopal K, Karthikeyan A and Srinivasan A K 2017 Nonlinear Dyn. 87 2281
|
[71] |
Valli D, Muthuswamy B, Banerjee S, Ariffin M R K, Wahab A W A, Ganesan K, Subramaniam C K and Kurths J 2014 Eur. Phys. J. 223 1465
|
[72] |
Rashtchi V and Nourazar M 2015 Circuits, Systems, and Signal Processing 34 3101
|
[73] |
Xu Y, Wang L and Duan S 2016 Acta Phys. Sin. 65 120503(in Chinese)
|
[74] |
Rajagopal K, Guessas L, Karthikeyan A, Srinivasan A and Adam G 2017 Complexity 2017 1892618
|
[75] |
Rajagopal K, Karthikeyan A and Duraisamy P 2017 Complexity 2017 8979408
|
[76] |
Alçin M, Pehlivan İ and Koyuncu İ 2016 Optik 127 5500
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|