Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120701    DOI: 10.1088/1674-1056/ac8cd7
GENERAL Prev   Next  

Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification

Hai-Zhu Pan(潘海珠)1,†, Mo-Qi Liu(刘沫岐)1, Hai-Miao Ge(葛海淼)1, and Qi Yuan(袁琪)2
1 College of Computer and Control Engineering, Qiqihar University, Qiqihar 161000, China;
2 College of Telecommunication and Electronic Engineering, Qiqihar University, Qiqihar 161000, China
Abstract  Benefiting from the development of hyperspectral imaging technology, hyperspectral image (HSI) classification has become a valuable direction in remote sensing image processing. Recently, researchers have found a connection between convolutional neural networks (CNNs) and Gabor filters. Therefore, some Gabor-based CNN methods have been proposed for HSI classification. However, most Gabor-based CNN methods still manually generate Gabor filters whose parameters are empirically set and remain unchanged during the CNN learning process. Moreover, these methods require patch cubes as network inputs. Such patch cubes may contain interference pixels, which will negatively affect the classification results. To address these problems, in this paper, we propose a learnable three-dimensional (3D) Gabor convolutional network with global affinity attention for HSI classification. More precisely, the learnable 3D Gabor convolution kernel is constructed by the 3D Gabor filter, which can be learned and updated during the training process. Furthermore, spatial and spectral global affinity attention modules are introduced to capture more discriminative features between spatial locations and spectral bands in the patch cube, thus alleviating the interfering pixels problem. Experimental results on three well-known HSI datasets (including two natural crop scenarios and one urban scenario) have demonstrated that the proposed network can achieve powerful classification performance and outperforms widely used machine-learning-based and deep-learning-based methods.
Keywords:  image processing      remote sensing      3D Gabor filter      neural networks      global affinity attention  
Received:  11 April 2022      Revised:  26 August 2022      Accepted manuscript online:  26 August 2022
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  93.85.Pq (Remote sensing in exploration geophysics)  
  93.90.+y (Other topics in geophysical observations, instrumentation, and techniques)  
  95.75.Mn (Image processing (including source extraction))  
Fund: Project supported by the Fundamental Research Funds in Heilongjiang Provincial Universities (Grant No. 145109218) and the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2020F050).
Corresponding Authors:  Hai-Zhu Pan     E-mail:  panhaizhu@qqhru.edu.cn

Cite this article: 

Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪) Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification 2022 Chin. Phys. B 31 120701

[1] Bishop C A, Liu J G and Mason P J 2011 Int. J. Remote Sens. 32 2409
[2] Stuart M B, McGonigle A J S and Willmott J R 2019 Sensors 19 3071
[3] Roessner S, Segl K, Heiden U and Kaufmann H 2001 IEEE Trans. Geosci. Remote Sens. 39 1525
[4] Audebert N, Saux B Le and Lefévre S 2019 IEEE Trans. Geosci. Remote Sens. 7 159
[5] Li S T, Song W W, Fang L Y, Chen Y S, Ghamisi P and Benediktsson J A 2019 IEEE Trans. Geosci. Remote Sens. 57 6690
[6] Duan Y, Huang H and Wang T 2021 IEEE Trans. Geosci. Remote Sens. 60 1
[7] Luo F L, Zou Z H, Liu J M and Lin Z P 2021 IEEE Trans. Geosci. Remote Sens. 60 1
[8] Kuo B C, Ho H H, Li C H, Hung C C and Taur J S 2013 IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7 317
[9] Ma L, Crawford M M and Tian J W 2010 IEEE Trans. Geosci. Remote Sens. 48 4099
[10] Zhang Y Q, Cao G, Li X S, Wang B S and Fu P 2019 Remote Sens. 11 2974
[11] Gu Y F, Liu T Z, Jia X P, Benediktsson J A and Chanussot J 2016 IEEE Trans. Geosci. Remote Sens. 54 3235
[12] Wang Q, He X and Li X L 2018 IEEE Trans. Geosci. Remote Sens. 57 911
[13] Rajadell O, Garcia-Sevilla P and Pla F 2012 IEEE Geosci. Remote Sens. Lett. 10 860
[14] Li W and Du Q 2014 IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 1012
[15] Chen C, Li W, Su H J and Liu K 2014 Remote Sens. 6 5795
[16] Shen L L and Jia S 2011 IEEE Trans. Geosci. Remote Sens. 49 5039
[17] Jia S, Lin Z J, Deng B, Zhu J S and Li Q Q 2019 IEEE Trans. Neural. Netw. Learn Syst. 31 1638
[18] Hong D F, Yokoya N, Chanussot J and Zhu X X 2018 IEEE Trans. Image Process. 28 1923
[19] Chen Y S, Lin Z H, Zhao X, Wang G and Gu Y F 2014 IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 7 2094
[20] Hu W, Huang Y Y, Wei L, Zhang F and Li H C 2015 J. Sensors 2015 12
[21] Yu S Q, Jia S and Xu C Y 2017 Neurocomputing 219 88
[22] Paoletti M E, Haut J M, Plaza J and Plaza A 2018 ISPRS J. Photogramm. Remote Sens. 145 120
[23] Jia S, Lin Z J, Xu M, Huang Q, Zhou J, Jia X P and Li Q Q 2020 IEEE Trans. Geosci. Remote Sens. 59 4150
[24] Ghaderizadeh S, Abbasi-Moghadam D, Sharifi A, Zhao N and Tariq A 2021 IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 14 7570
[25] Ge Z X, Cao G, Li X S and Fu P 2020 IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 13 5776
[26] Bhatti U A, Yu Z Y, Chanussot J, Zeeshan Z, Yuan L W, Luo W, Nawaz S A, Bhatti M A, Ain Q U and Mehmood A 2021 IEEE Trans. Geosci. Remote Sens. 60 1
[27] Chen Y S, Zhu L, Ghamisi P, Jia X P, Li G Y and Tang L 2017 IEEE Geosci. Remote Sens. Lett. 14 2355
[28] Krizhevsky A, Sutskever I and Hinton G E 2012 Adv. Neural Inf. Process. Syst. 60 84
[29] Jiang C Z and Su J B 2018 Proceedings of 25th IEEE International Conference on Image Processing, October 7-10, 2018, Megaron Athens, Greece, p. 3408
[30] Luan S Z, Chen C, Zhang B C, Han J G and Liu J Z 2018 IEEE Trans. Image Process. 27 4357
[31] Jia S, Liao J H, Xu M, Li Y, Zhu J S, Sun W W, Jia X P and Li Q Q 2022 IEEE Trans. Geosci. Remote Sens. 60 1
[32] Sun H, Zheng X T, Lu X Q and Wu S Y 2019 IEEE Trans. Geosci. Remote Sens. 58 3232
[33] Mou L C and Zhu X X 2019 IEEE Trans. Geosci. Remote Sens. 58 110
[34] Fang B, Li Y, Zhang H K and Chan J C W 2019 Remote Sens. 11 159
[35] Hu J, Shen L, Albanie S, Sun G and Wu E H 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 19-21, 2018, Salt Lake City, Utah, USA, p. 7132
[36] Woo S, Park J, Lee J Y and Kweon I S 2018 Proceedings of the European Conference on Computer Vision, September 8-14, 2018, Munich, Germany, p. 3
[37] Ma W P, Yang Q F, Wu Y, Zhao W and Zhang X R 2019 Remote Sens. 11 1307
[38] Fu J, Liu J, Tian H J, Li Y, Bao Y J, Fang Z W and Lu H Q 2019 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Los Angeles CA, USA, p. 3146
[39] Li R, Zheng S Y, Duan C X, Yang Y and Wang X Q 2020 Remote Sens. 12 582
[40] Hubel D H and Wiesel T N 1959 J. Physiol. 148 574
[41] Yun T and Guan L 2013 Pattern Recognit. 46 529
[42] Jain A K and Farrokhnia F 1991 Pattern Recognit. 24 1167
[43] Wu S X, Chen Y C, Li X, Wu A C, You J J and Zheng W S 2016 IEEE Winter Conference on Applications of Computer Vision, March 7-10, 2016, Lake Placid, NY, USA, p. 1
[44] Zhu Q Q, Zhong Y F, Zhang L P and Li D R 2018 IEEE Trans. Geosci. Remote Sens. 56 6180
[45] Liang J, Zhou J, Tong L, Bai X and Wang B 2018 Pattern Recognit. 76 476
[46] Zhao C R, Lv X B, Zhang Z, Zuo W M, Wu J and Miao D Q 2020 IEEE Trans. Multimedia 22 3180
[47] Zhang Z Z, Lan C L, Zeng W J, Jin X and Chen Z B 2020 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 14-19, 2020, Seattle, WA, USA, p. 3186
[48] Ge H M, Pan H Z, Wang L G, Liu M Q and Li C 2021 J. Appl. Remote. Sens. 15 042604
[49] Chen Y S, Jiang H L, Li C Y, Jia X P and Ghamisi P 2016 IEEE Trans. Geosci. Remote Sens. 54 6232
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[4] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[5] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[6] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[7] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[8] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[9] Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
Zijian Jiang(蒋子健), Jianwen Zhou(周健文), and Haiping Huang(黄海平). Chin. Phys. B, 2021, 30(4): 048702.
[10] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[11] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[12] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[13] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[14] Application of the edge of chaos in combinatorial optimization
Yanqing Tang(唐彦卿), Nayue Zhang(张娜月), Ping Zhu(朱萍), Minghu Fang(方明虎), and Guoguang He(何国光). Chin. Phys. B, 2021, 30(10): 100505.
[15] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
No Suggested Reading articles found!