Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120503    DOI: 10.1088/1674-1056/ac685c
GENERAL Prev   Next  

Measure synchronization in hybrid quantum-classical systems

Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静)
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  Measure synchronization in hybrid quantum-classical systems is investigated in this paper. The dynamics of the classical subsystem is described by the Hamiltonian equations, while the dynamics of the quantum subsystem is governed by the Schrödinger equation. By increasing the coupling strength in between the quantum and classical subsystems, we reveal the existence of measure synchronization in coupled quantum-classical dynamics under energy conservation for the hybrid systems.
Keywords:  measure synchronization      quantum measure synchronization      hybrid quantum-classical systems  
Received:  02 January 2022      Revised:  26 March 2022      Accepted manuscript online:  20 April 2022
PACS:  05.45.Mt (Quantum chaos; semiclassical methods)  
  64.60.-i (General studies of phase transitions)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11402199), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2022JM-004 and 2018JM1050), and the Education Department Foundation of Shaanxi Province, China (Grant No. 14JK1676).
Corresponding Authors:  Haibo Qiu     E-mail:  phyqiu@gmail.com

Cite this article: 

Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静) Measure synchronization in hybrid quantum-classical systems 2022 Chin. Phys. B 31 120503

[1] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Berlin: Springer)
[2] Néda Z, Ravasz E, Brechet Y, Vicsek T and Barabási A L 2000 Nature 403 849
[3] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[4] Pikovsky A, Rosenblum M and Kurths J 2003 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[5] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1704
[6] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[7] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
[8] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[9] Hampton A and Zanette D H 1999 Phys. Rev. Lett. 83 2179
[10] Zhirov O V and Shepelyansky D L 2006 Eur. Phys. J. D 38 375
[11] Lee T E and Sadeghpour H R 2013 Phys. Rev. Lett. 111 234101
[12] Galve F, Giorgi G L and Zambrini R 2017 Lectures on General Quantum Correlations and Their Applications (Berlin: Springer) pp. 393-420
[13] Zhou K J, Zou J, Xu B M, Li L and Shao B 2021 Commun. Theor. Phys. 73 105101
[14] Lörch N, Amitai E, Nunnenkamp A and Bruder C 2016 Phys. Rev. Lett. 117 073601
[15] Wang X, Zhan M, Lai C H and Gang H 2003 Phys. Rev. E. 67 066215
[16] Vincent U E 2005 New J. Phys. 7 209
[17] Tian J, Qiu H B, Wang G F, Chen Y and Fu L B 2013 Phys. Rev. E 88 032906
[18] Tian J, Wang Y F and Qiu H B 2020 Commun. Theor. Phys. 72 055701
[19] Tian J, Li B, Liu T and Qiu H B 2019 Chaos 29 093131
[20] Qiu H B, Juliá-Díaz B, García-March M A and Polls A 2014 Phys. Rev. A 90 033603
[21] Sur S and Ghosh A 2019 Phys. Lett. A 384 126176
[22] Zhang L, Xu X T and Zhang W P 2020 Eur. Phys. J. Plus 135 202
[23] Hermoso de Mendoza I, Pachón L A, Gómez-Gardeñes J and Zueco D 2014 Phys. Rev. E 90 052904
[24] Walter S, Nunnenkamp A and Bruder C 2014 Phys. Rev. Lett. 112 094102
[25] Qiu H B, Zambrini R, Polls A, Martorell J and Juliá-Díaz B 2015 Phys. Rev. A 92 043619
[26] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1988 Numerical Recipes in C (Cambridge: Cambridge University Press)
[27] Leggett A J 2001 Rev. Mod. Phys. 73 307
[28] Qiu H B, Tian J and Fu L B 2010 Phys. Rev. A 81 043613
[1] Collective dynamics in a non-dissipative two-coupled pendulum system
Chen Zi-Chen (陈子辰), Li Bo (李博), Qiu Hai-Bo (邱海波), Xi Xiao-Qiang (惠小强). Chin. Phys. B, 2014, 23(5): 050506.
No Suggested Reading articles found!