Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080701    DOI: 10.1088/1674-1056/ac4487
GENERAL Prev   Next  

Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network

Tong-Bao Zhang(张同宝)1,2, Hui-Jian Liang(梁慧剑)2,3, Shi-Guang Wang(王时光)1,2,†, and Chen-Guang Ouyang(欧阳晨光)1
1 Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
2 State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China;
3 Department of Electronic Engineer, Tsinghua University, Beijing 100084, China
Abstract  Ionosphere delay is one of the main sources of noise affecting global navigation satellite systems, operation of radio detection and ranging systems and very-long-baseline-interferometry. One of the most important and common methods to reduce this phase delay is to establish accurate nowcasting and forecasting ionospheric total electron content models. For forecasting models, compared to mid-to-high latitudes, at low latitudes, an active ionosphere leads to extreme differences between long-term prediction models and the actual state of the ionosphere. To solve the problem of low accuracy for long-term prediction models at low latitudes, this article provides a low-latitude, long-term ionospheric prediction model based on a multi-input-multi-output, long-short-term memory neural network. To verify the feasibility of the model, we first made predictions of the vertical total electron content data 24 and 48 hours in advance for each day of July 2020 and then compared both the predictions corresponding to a given day, for all days. Furthermore, in the model modification part, we selected historical data from June 2020 for the validation set, determined a large offset from the results that were predicted to be active, and used the ratio of the mean absolute error of the detected results to that of the predicted results as a correction coefficient to modify our multi-input-multi-output long short-term memory model. The average root mean square error of the 24-hour-advance predictions of our modified model was 4.4 TECU, which was lower and better than 5.1 TECU of the multi-input-multi-output, long short-term memory model and 5.9 TECU of the IRI-2016 model.
Keywords:  long-short-term memory neural network      equatorial ionosphere      vertical total electron content      vertical total electron content (vTEC)  
Received:  16 September 2021      Revised:  13 December 2021      Accepted manuscript online:  18 December 2021
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  84.35.+i (Neural networks)  
  94.20.dt (Equatorial ionosphere)  
  96.12.ji (Ionospheres)  
Fund: We would like to thank Data Center for Meridian Space Weather Monitoring Project (NSSC, CAS) for providing detected ionospheric vTEC data, and to thank Space Physics Data Facility of Goddard Space Flight Center (NASA) for providing calculated Dst data and calculated ionospheric vTEC data. We would like to thank Zhengbo Wang, Jianwei Zhang, and Yuhang Li for feedback on our manuscript. Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0302101) and the Initiative Program of State Key Laboratory of Precision Measurement Technology and Instrument.
Corresponding Authors:  Shi-Guang Wang     E-mail:  wangsg@tsinghua.edu.cn

Cite this article: 

Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光) Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network 2022 Chin. Phys. B 31 080701

[1] Hoque M M and Jakowski N 2006 J. Geod. 81 259
[2] Anna K G, Pawel W and Andrzej B 2017 Remote Sens. 9 1221
[3] Hadas T, Krypiak G A, Hernández P M, et al. 2017 J. Geop. 122 9420
[4] Li M, Yuan Y, Wang N, et al. 2018 J. Geod. 92 889
[5] Fujieda M, Piester D, Gotoh T, Becker J, Aida M and Bauch A 2014 Metrologia 51 253
[6] Cyril G, Donald D B and Dustin M S 2015 Planetary and Space Science 117 421
[7] Laurence G A, Karim E M and George S 2000 Geophysical Research Letters 27 1451
[8] Ji Y, Zhang Y, Dong Z, Zhang Q, Li D and Yao B 2020 IEEE Transactions on Geoscience and Remote Sensing 58 3941
[9] Ilyushin Y A 2009 Radiophys Quant. Electron. 52 332
[10] Alizadeh M M, Wijaya D D, Hobiger T, Weber R and Schuh H 2013 Atmospheric effects in space geodesy Springer, Berlin, Heidelberg. pp. 35-71
[11] Su K, Jin S, Jiang J, et al. 2021 GPS Solut. 25 68
[12] http://arxiv.org/abs/1810.13273
[13] Sun W, Xu L, Huang X, et al. 2017 2017 IEEE Visual Communications and Image Processing 10-13 December 2017, St. Petersburg, FL, USA, 17582618
[14] Gruet M A, Chandorkar M, Sicard A, et al. 2018 Space Weather 16 1882
[15] Srivani I, Prasad G S V, Ratnam D V 2019 IEEE Geoscience and Remote Sensing Letters 16 1180
[16] https://avesis.kocaeli.edu.tr/yayin/78af7cc4-a6af-4a3c-a18d-cafba49674dd/ionospheric-tec-prediction-performance-of-arima-and-lstm-methods-in-different-space-weather-conditions
[17] Tang R, Zeng F, Chen Z, et al. 2020 Atmosphere 11 316
[18] Ruwali A, Kumar A J S, Prakash K B, et al. 2020 IEEE Geoscience and Remote Sensing Letters 18 1004
[19] Liu L, Zou S, Yao Y, et al. 2020 Space Weather 18 e2020SW002501
[20] Rao T V, Sridhar M, Ratnam D V, et al. 2021 IEEE Geoscience and Remote Sensing Letters
[21] Wen Z, Li S, Li L, et al. 2021 Astrophysics and Space Science 366 1
[22] Xiong P, Zhai D, Long C, et al. 2021 Space Weather 19 e2020SW002706
[23] Salar F W, Chowdary J D, Reddy C R, et al. 2021 Materials
[24] Moon S, Kim Y H, Kim J H, et al. 2020 Journal of the Korean Physical Society 77 1265
[25] Kim J H, Kwak Y S, Kim Y H, et al. 2020 Space Weather 18 e2020SW002590
[26] Kim J, Kwak Y S, Kim Y H, et al. 2021 ESSOAr
[27] Zivot E and Wang J 2003 Rolling Analysis of Time Series (New York:Springer) pp. 299-346
[28] Ivan K, Yuichi O, Dora P and Rod H 2012 J. Geophys. Res. 117 A08330
[1] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[2] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[3] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[4] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[5] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[6] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[7] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[8] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[9] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[12] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] Application of the edge of chaos in combinatorial optimization
Yanqing Tang(唐彦卿), Nayue Zhang(张娜月), Ping Zhu(朱萍), Minghu Fang(方明虎), and Guoguang He(何国光). Chin. Phys. B, 2021, 30(10): 100505.
[15] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
No Suggested Reading articles found!