Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(6): 060510    DOI: 10.1088/1674-1056/24/6/060510
GENERAL Prev   Next  

Optimization of combined endoreversible Carnot heat engines with different objectives

Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚)
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract  Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engines in this paper. The applicabilities of the entropy generation minimization and entransy theory to the optimizations are discussed. For the discussed cases, only the entransy loss coefficient is always agreeable to the optimization of thermal efficiency. The applicabilities of the other discussed concepts to the optimizations are conditional. Different concepts and principles are needed for different optimization objectives, and the optimization principles have their application preconditions. When the preconditions are not satisfied, the principles may be not applicable.
Keywords:  combined endoreversible Carnot heat engines      entransy theory      entropy generation minimization      finite time thermodynamics  
Received:  06 January 2015      Revised:  26 January 2015      Accepted manuscript online: 
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  44.90.+c (Other topics in heat transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51376101) and the Science Fund for Creative Research Groups, China (Grant No. 51321002).
Corresponding Authors:  Cheng Xue-Tao     E-mail:  chengxt02@gmail.com
About author:  05.70.Ln; 44.90.+c

Cite this article: 

Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚) Optimization of combined endoreversible Carnot heat engines with different objectives 2015 Chin. Phys. B 24 060510

[1] Myat A, Thu K and Kim Y D 2011 Appl. Thermal Eng. 31 2405
[2] Cheng X T and Liang X G 2013 Chin. Sci. Bull. 58 4696
[3] Maheshwari G, Chaudhary S and Somani S K 2010 Int. J. Low-Carbon Technol. 5 1
[4] Cheng X T and Liang X G 2012 Energy 47 421
[5] Al-Sulaiman F A, Dincer I and Hamdullahpur F 1995 Energy Convers. Manag. 36 1
[7] Chen L, Sun F and Wu C 1996 Int. J. Energy, Environment, Economics 4 9
[8] Chen L, Sun F, Wu C and Ni N 1999 Int. J. Energy, Environment, Economics 9 35
[9] Chen L, Wu C and Sun F 1999 J. Non-Equilib. Thermodyn. 24 327
[10] Cheng X T and Liang X G 2013 Chin. Phys. B 22 080508
[11] Chen L, Xia S and Sun F 2009 J. Appl. Phys. 105 044907
[12] Suleman F, Dincer I and Agelin-Chaab M 2014 Appl. Thermal Eng. 73 557
[13] Chen L G and Sun F R 2004 Advances in Finite Time Thermodynamics: Analysis and Optimization (New York: Nova Science Publishers)
[14] Chen L G 2014 Sci. China: Tech. Sci. 57 2305
[15] Cheng X T and Liang X G 2012 Energy 44 964
[16] Cheng X T and Liang X G 2013 Chin. Phys. B 22 010508
[17] Salamon P, Hoffmann K H, Schubert S, Berry R S and Andresen B 2001 J. Non-Equilib. Thermodyn. 26 73
[18] Sun C, Cheng X T and Liang X G 2014 Chin. Phys. B 23 050513
[19] Guo Z Y, Zhu H Y and Liang X G 2007 Int. J. Heat Mass Transfer 50 2545
[20] Chen L G 2012 Chin. Sci. Bull. 57 4404
[21] Cheng X T, Zhang Q Z, Xu X H and Liang X G 2013 Chin. Phys. B 22 020503
[22] Chen L G, Xiao Q H, Xie Z H and Sun F R 2013 Int. J. Heat Mass Transfer 67 506
[23] Chen L G, Xiao Q H, Xie Z H and Sun F R 2012 Int. Commun. Heat Mass Transfer 39 1556
[24] Feng H J, Chen L G, Xie Z H and Sun F R 2013 Sci. China: Tech. Sci. 56 299
[25] Chen L G, Feng H J, Xie Z H and Sun F R 2013 Int. J. Heat Mass Transfer 67 704
[26] Feng H J, Chen L G and Sun F R 2012 Sci. China: Tech. Sci. 55 779
[27] Feng H J, Chen L G, Xie Z H and Sun F R 2014 Chin. Sci. Bull. 59 2470
[28] Feng H J, Chen L G, Xie Z H and Sun F R 2014 Int. Commun. Heat Mass Transfer 52 26
[29] Li T, Fu W and Zhu J 2014 Energy 72 561
[30] Zhu Y, Hu Z, Zhou Y, Jiang L and Yu L 2014 Energy Convers. Manag. 88 267
[31] Yang A B, Chen L G, Xia S J and Sun F R 2014 Chin. Sci. Bull. 59 2031
[32] Zhou B, Cheng X T and Liang X G 2013 J. Appl. Phys. 113 124904
[33] Wang W H, Cheng X T and Liang X G 2013 Chin. Phys. B 22 110506
[34] Bejan A 1996 J. Appl. Phys. 79 1191
[35] Cheng X T and Liang X G 2013 Int. J. Heat Mass Transfer 64 903
[36] Cheng X T and Liang X G 2014 Chin. Sci. Bull. 59 5309
[1] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[2] Analyses of an air conditioning system with entropy generation minimization and entransy theory
Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟). Chin. Phys. B, 2016, 25(6): 060507.
[3] Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 080509.
No Suggested Reading articles found!