Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070506    DOI: 10.1088/1674-1056/ac4a63
GENERAL Prev   Next  

Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability

Li Li(黎丽)1, Zhiguo Zhao(赵志国)2,†, and Huaguang Gu(古华光)3
1 Guangdong Key Laboratory of Modern Control Technology, Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou 510070, China;
2 School of Science, Henan Institute of Technology, Xinxiang 453003, China;
3 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
Abstract  Post-inhibitory rebound (PIR) spike, which has been widely observed in diverse nervous systems with different physiological functions and simulated in theoretical models with class-2 excitability, presents a counterintuitive nonlinear phenomenon in that the inhibitory effect can facilitate neural firing behavior. In this study, a PIR spike induced by inhibitory stimulation from the resting state corresponding to class-3 excitability that is not related to bifurcation is simulated in the Morris-Lecar neuron. Additionally, the inhibitory self-feedback mediated by an autapse with time delay can evoke tonic/repetitive spiking from phasic/transient spiking. The dynamical mechanism for the PIR spike and the tonic/repetitive spiking is acquired with the phase plane analysis and the shape of the quasi-separatrix curve. The result extends the counterintuitive phenomenon induced by inhibition to class-3 excitability, which presents a potential function of inhibitory autapse and class-3 neuron in many neuronal systems such as the auditory system.
Keywords:  post-inhibitory rebound spike      class 3 excitability      inhibitory autapse      neuronal firing  
Received:  26 October 2021      Revised:  01 January 2022      Accepted manuscript online:  12 January 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.lg (Synapses: chemical and electrical (gap junctions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11802085, 11872276, and 12072236), the Science and Technology Project of Guangzhou (Grant No. 202102021167), GDAS' Project of Science and Technology Development (Grant No. 2021GDASYL-20210103088), and the Science and Technology Development Program of Henan Province, China (Grant No. 212102310827).
Corresponding Authors:  Zhiguo Zhao     E-mail:  zzg164637758@163.com

Cite this article: 

Li Li(黎丽), Zhiguo Zhao(赵志国), and Huaguang Gu(古华光) Negative self-feedback induced enhancement and transition of spiking activity for class-3 excitability 2022 Chin. Phys. B 31 070506

[1] Bean B P 2007 Nat. Rev. Neurosci. 8 451
[2] Ratté S, Hong S H, De Schutter E and Prescott S A 2013 Neuron 78 758
[3] Hodgkin A L 1948 J. Physiol. 107 165
[4] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[5] Prescott S A, Koninck Y D and Sejnowski T J 2008 PLoS Comput. Biol. 4 e1000198
[6] Zhao Z G and Gu H G 2017 Sci. Rep. 7 6760
[7] Izhikevich E M 2007 Dynamical systems in neuroscience:The geometry of excitability and bursting (Cambridge:MIT)
[8] Chen A N and Meliza C D 2018 J. Neurophysiol. 119 1127
[9] Huguet G, Meng X Y and Rinzel J 2017 Front. Comput. Neurosci. 11 3
[10] Zhao Z G, Li L and Gu H G 2020 Sci. Rep. 10 3646
[11] Cook D L, Schwindt P C, Grande L A and Spain W J 2003 Nature 421 66
[12] MacGregor D J and Leng G 2013 PLoS Comput. Biol. 9 e1003187
[13] Smith T C and Jahr C E 2002 Nat. Neurosci. 5 760
[14] Chen A N and Meliza C D 2020 J. Neurosci. 40 2047
[15] Prescott S A, Ratté S, De Koninck Y and Sejnowski T J 2008 J. Neurophys. 100 3030
[16] Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171
[17] Franci A, Drion G and Sepulchre R 2012 SIAM J. App. Dyn. Syst. 11 1698
[18] Song X L, Wang H T and Chen Y 2019 Nonlinear Dynam. 96 2341
[19] Dodla R and Rinzel J 2006 Phys. Rev. E 73 010903
[20] Silver R A 2010 Nat. Rev. Neurosci. 11 474
[21] Goldwyn J H, Slabe B R, Travers J B and Terman D 2018 PLoS Comput. Biol. 14 e1006292
[22] Ferrante M, Shay C F, Tsuno Y, Chapman G W and Hasselmo M E 2017 Cereb. Cortex 27 2111
[23] Tikidji-Hamburyan R A, Martínez J J, White J A and Canavier C C 2015 J. Neurosci. 35 15682
[24] Adhikari M H, Quilichini P P, Roy D, Jirsa V and Bernard C 2012 J. Neurosci. 32 6501
[25] Shay C F, Ferrante M, Chapman IV G W and Hasselmo M E 2016 Neurobiol Learn. Mem. 129 83
[26] Felix R A, Fridberger A, Leijon S, Berrebi A S and Magnusson A K 2011 J. Neurosci. 31 12566
[27] Beiderbeck B, Myoga M H, Müller N I C, Callan A R, Friauf E, Grothe B and Pecka M 2018 Nat. Commun. 9 1771
[28] Higgs M H, Kuznetsova M S and Spain W J 2012 J. Neurosci. 32 15489
[29] Dodla R, Svirskis G and Rinzel J 2006 J. Neurophys. 95 2664
[30] Van Der Loos H and Glaser E M 1972 Brain Res. 48 355
[31] Bacci A, Huguenard J R and Prince D A 2003 J. Neurosci. 23 859
[32] Bacci A and Huguenard J R 2006 Neuron 49 119
[33] Yin L P, Zheng R, Ke W, He Q S, Zhang Y, Li J L, Wang B, Mi Z, Long Y S, Rasch M J, Li T F, Luan G M and Shu Y S 2018 Nat. Commun. 9 4890
[34] Pouzat C and Marty A 1998 J. Physiol. 509 777
[35] Cobb S R, Halasy K, Vida I, Nyiri G, Tamas G, Buhl E H and Somogyi P 1997 Neuroscience 79 629
[36] Saada R, Miller N, Hurwitz I and Susswein A J 2009 Curr. Biol. 19 479
[37] Manseau F, Marinelli S, Méndez P, Schwaller B, Prince D A, Huguenard J R and Bacci A 2010 PLoS Biol. 8 e1000492
[38] Uzun R, Yilmaz E and Ozer M 2017 Physica A 486 386
[39] Guo D Q, Wu S D, Chen M M, Perc M, Zhang Y S, Ma J L, Cui Y, Xu P, Xia Y and Yao D Z 2016 Sci. Rep. 6 26096
[40] Baysal V, Erkan E and Yilmaz E 2021 Phil. Trans. R. Soc. A 379 20200237
[41] Uzun R 2017 Appl. Math. Comput. 315 203
[42] Song X L, Wang H T and Chen Y 2018 Nonlinear Dynam. 94 141
[43] Pinto M A, Rosso O A and Matias F S 2019 Phys. Rev. E 99 062411
[44] Ge M Y, Jia Y, Xu Y, Lu L L, Wang H W and Zhao Y J 2019 Appl. Math. Comput. 352 136
[45] Lin H R, Wang C H, Sun Y C and Yao W 2020 Nonlinear Dynam. 100 3667
[46] Yao C G, He Z W, Nakano T, Qian Y and Shuai J W 2019 Nonlinear Dynam. 97 1425
[47] Ren G D, Zhou P, Ma J, Cai N, Alsaedi A and Ahmad B 2017 Int. J. Bifurcat. Chaos 27 1750187
[48] Wang H T, Ma J, Chen Y L and Chen Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 3242
[49] Cao B, Gu H G and Li Y Y 2021 Chin. Phys. B 30 050502
[50] Zhao Z G, Li L and Gu H G 2020 Commun. Nonlinear Sci. Numer. Simul. 85 105250
[51] Li Y Y, Gu H G and Ding X L 2019 Nonlinear Dynam. 97 2091
[52] Zhao Z G, Li L, Gu H G and Gao Y 2020 Nonlinear Dynam. 99 1129
[53] Ma H Q, Jia B, Li Y Y and Gu H G 2021 Neural Plast. 2021 6692411
[54] Liu C M, Liu X L and Liu S Q 2014 Biol. Cybern. 108 75
[55] Ermentrout B 2002 Simulating, analyzing, and animating dynamical systems:A guide to XPPAUT for researchers and students (Philadelphia:SIAM) pp. 12-15
[56] Goaillard J M, Taylor A L, Pulver S R and Marder E 2010 J. Neurosci. 30 4687
[57] Li W C, Merrison-Hort R, Zhang H Y and Borisyuk R 2014 J. Neurosci. 34 6065
[58] Guan L N, Jia B and Gu H G 2019 Int. J. Bifurcat. Chaos 29 1950198
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!