Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064212    DOI: 10.1088/1674-1056/ac40fe
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates

Xiao Li(李骁)1,2,3, Liang-Liang Wang(王亮亮)1, Jia-shun Zhang(张家顺)1,†, Wei Chen(陈巍)4, Yue Wang(王玥)1,3, Dan Wu (吴丹)1,2,3, and Jun-Ming An (安俊明)1,3,‡
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences(CAS), Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  A quantum key distribution transmitter chip based on hybrid-integration of silica planar light-wave circuit (PLC) and lithium niobates (LN) modulator PLC is presented. The silica part consists of a tunable directional coupler and 400-ps delay line, and the LN part is made up of a Y-branch, with electro-optic modulators on both arms. The two parts are facet-coupled to form an asymmetric Mach-Zehnder interferometer. We successfully encode and decode four BB84 states at 156.25-MHz repetition rate. Fast phase-encoding of 0 or $\pi $ is achieved, with interference fringe visibilities 78.53% and 82.68% for states $|+\rangle$ and $|-\rangle$, respectively. With the aid of an extra off-chip LN intensity modulator, two time-bin states are prepared and the extinction ratios are 18.65 dB and 15.46 dB for states $|0\rangle$ and $|1\rangle$, respectively.
Keywords:  quantum key distribution      hybrid-integration      BB84  
Received:  14 September 2021      Revised:  05 December 2021      Accepted manuscript online:  08 December 2021
PACS:  42.82.Bq (Design and performance testing of integrated-optical systems)  
  42.82.Fv (Hybrid systems)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306403), the National Natural Science Foundation of China (Grant Nos. 61435013 and 61627820), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB43000000), and the K. C. Wong Education Foundation, Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY030000).
Corresponding Authors:  Jia-shun Zhang, Jun-Ming An     E-mail:  zhangjiashun@semi.ac.cn;junming@semi.ac.cn

Cite this article: 

Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明) Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates 2022 Chin. Phys. B 31 064212

[1] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7
[2] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J 1992 Journal of Cryptology 5 3
[3] Muller A, Zbinden H and Gisin N 1996 Europhys. Lett. 33 335
[4] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[5] Bonfrate G, Harlow M, Ford C, Maxwell G and Townsend P D 2001 Electron. Lett. 37 13
[6] Honjo T, Inoue K and Takahashi H 2004 Opt. Lett. 29 2797
[7] Nambu Y, Hatanaka T and Nakamura K 2004 Jpn. J. Appl. Phys. 43 L1109
[8] Kimura T, Nambu Y, Hatanaka T, Tomita A, Kosaka H and Nakamura K 2004 Jpn. J. Appl. Phys. 43 L1217
[9] Nambu Y, Yoshino K i and Tomita A 2006 Jpn. J. Appl. Phys. 45 5344
[10] Nambu Y, Yoshino K i and Tomita A 2008 J. Mod. Opt. 55 1953
[11] Tanaka A, Fujiwara M, Nam S W, Nambu Y, Takahashi S, Maeda W, Yoshino K i, Miki S, Baek B, Zhen W, Tajima A, Tomita A and Sasaki M 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2008/02/24, San Diego, California, USA, p. OWJ2
[12] Tanaka A, Fujiwara M, Nam S W, Nambu Y, Takahashi S, Maeda W, Yoshino K-i, Miki S, Baek B, Wang Z, Tajima A, Sasaki M and Tomita A 2008 Opt. Express 16 11354
[13] Tomita A, Yoshino K-i, Nambu Y, Tajima A, Tanaka A, Takahashi S, Maeda W, Miki S, Wang Z, Fujiwara M and Sasaki M 2010 Opt. Fiber Technol. 16 55
[14] Tanaka A, Fujiwara M, Yoshino K, Takahashi S, Nambu Y, Tomita A, Miki S, Yamashita T, Wang Z, Sasaki M and Tajima A 2012 IEEE J. Quantum Electron. 48 542
[15] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O'Brien J L and Thompson M G 2017 Nat. Commun. 8 13984
[16] Vaquero A, Kirkwood, R A , Burenkov, V, Chunnilall, C J, Sinclair A G, Hart A, Semenenko H, Sibson P Erven C and Thompson M G 2018 SPIE Photonics Europe, Quantum Technologies, 106741A-1-106741A-8
[17] Ma C, Sacher W D, Tang Z, Mikkelsen J C, Yang Y, Xu F, Thiessen T, Lo H K and Poon J K S 2016 Optica 3 1274
[18] Wang J, Bonneau D, Villa M, Silverstone J W, Santagati R, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O'Brien J L and Thompson M G 2016 Optica 3 407
[19] Sibson P, Kennard J E, Stanisic S, Erven C, O'Brien J L and Thompson M G 2017 Optica 4 172
[20] Cai H, Long C M, DeRose C T, Boynton N, Urayama J, Camacho R, Pomerene A, Starbuck A L, Trotter D C, Davids P S and Lentine A L 2017 Opt. Express 25 12282
[21] Avesani M, Calderaro L, Schiavon M, Stanco A, Agnesi C, Santamato A, Zahidy M, Scriminich A, Foletto G, Contestabile G, Chiesa M, Rotta D, Artiglia M, Montanaro A, Romagnoli M, Sorianello V, Vedovato F, Vallone G and Villoresi P 2021 npj Quantum Information 7 93
[22] Geng W, Zhang C, Zheng Y, He J, Zhou C and Kong Y 2019 Opt. Express 27 29045
[23] Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C and Liu A Q 2019 Nat. Photon. 13 839
[24] Aratake A, Tsuzuki K, Ishii M, Saida T, Goh T, Doi Y, Yamazaki H, Fukumitsu T, Yamada T and Mino S 2020 IEICE Trans. Electron. 103 353
[25] Nambu Y, Hatanaka T and Nakamura K 2004 Jpn. J. Appl. Phys. 43 L1109
[26] Ren M, Li X, Zhang J, Wang L, Wang Y, Wu Y and An J 2020 Optics & Laser Technology 122 105837
[27] Li X, Ren M, Zhang J, Wang L, Chen W, Wang Y, Yin X, Wu Y and An J 2021 Photon. Res. 9 222
[28] Lo H K and Preskill J 2007 Quantum Information and Computation 7 431
[29] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[8] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[9] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[10] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[11] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[14] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
[15] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
No Suggested Reading articles found!