ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates |
Xiao Li(李骁)1,2,3, Liang-Liang Wang(王亮亮)1, Jia-shun Zhang(张家顺)1,†, Wei Chen(陈巍)4, Yue Wang(王玥)1,3, Dan Wu (吴丹)1,2,3, and Jun-Ming An (安俊明)1,3,‡ |
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences(CAS), Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract A quantum key distribution transmitter chip based on hybrid-integration of silica planar light-wave circuit (PLC) and lithium niobates (LN) modulator PLC is presented. The silica part consists of a tunable directional coupler and 400-ps delay line, and the LN part is made up of a Y-branch, with electro-optic modulators on both arms. The two parts are facet-coupled to form an asymmetric Mach-Zehnder interferometer. We successfully encode and decode four BB84 states at 156.25-MHz repetition rate. Fast phase-encoding of 0 or $\pi $ is achieved, with interference fringe visibilities 78.53% and 82.68% for states $|+\rangle$ and $|-\rangle$, respectively. With the aid of an extra off-chip LN intensity modulator, two time-bin states are prepared and the extinction ratios are 18.65 dB and 15.46 dB for states $|0\rangle$ and $|1\rangle$, respectively.
|
Received: 14 September 2021
Revised: 05 December 2021
Accepted manuscript online: 08 December 2021
|
PACS:
|
42.82.Bq
|
(Design and performance testing of integrated-optical systems)
|
|
42.82.Fv
|
(Hybrid systems)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306403), the National Natural Science Foundation of China (Grant Nos. 61435013 and 61627820), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB43000000), and the K. C. Wong Education Foundation, Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY030000). |
Corresponding Authors:
Jia-shun Zhang, Jun-Ming An
E-mail: zhangjiashun@semi.ac.cn;junming@semi.ac.cn
|
Cite this article:
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明) Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates 2022 Chin. Phys. B 31 064212
|
[1] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7 [2] Bennett C H, Bessette F, Brassard G, Salvail L and Smolin J 1992 Journal of Cryptology 5 3 [3] Muller A, Zbinden H and Gisin N 1996 Europhys. Lett. 33 335 [4] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762 [5] Bonfrate G, Harlow M, Ford C, Maxwell G and Townsend P D 2001 Electron. Lett. 37 13 [6] Honjo T, Inoue K and Takahashi H 2004 Opt. Lett. 29 2797 [7] Nambu Y, Hatanaka T and Nakamura K 2004 Jpn. J. Appl. Phys. 43 L1109 [8] Kimura T, Nambu Y, Hatanaka T, Tomita A, Kosaka H and Nakamura K 2004 Jpn. J. Appl. Phys. 43 L1217 [9] Nambu Y, Yoshino K i and Tomita A 2006 Jpn. J. Appl. Phys. 45 5344 [10] Nambu Y, Yoshino K i and Tomita A 2008 J. Mod. Opt. 55 1953 [11] Tanaka A, Fujiwara M, Nam S W, Nambu Y, Takahashi S, Maeda W, Yoshino K i, Miki S, Baek B, Zhen W, Tajima A, Tomita A and Sasaki M 2008 Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2008/02/24, San Diego, California, USA, p. OWJ2 [12] Tanaka A, Fujiwara M, Nam S W, Nambu Y, Takahashi S, Maeda W, Yoshino K-i, Miki S, Baek B, Wang Z, Tajima A, Sasaki M and Tomita A 2008 Opt. Express 16 11354 [13] Tomita A, Yoshino K-i, Nambu Y, Tajima A, Tanaka A, Takahashi S, Maeda W, Miki S, Wang Z, Fujiwara M and Sasaki M 2010 Opt. Fiber Technol. 16 55 [14] Tanaka A, Fujiwara M, Yoshino K, Takahashi S, Nambu Y, Tomita A, Miki S, Yamashita T, Wang Z, Sasaki M and Tajima A 2012 IEEE J. Quantum Electron. 48 542 [15] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O'Brien J L and Thompson M G 2017 Nat. Commun. 8 13984 [16] Vaquero A, Kirkwood, R A , Burenkov, V, Chunnilall, C J, Sinclair A G, Hart A, Semenenko H, Sibson P Erven C and Thompson M G 2018 SPIE Photonics Europe, Quantum Technologies, 106741A-1-106741A-8 [17] Ma C, Sacher W D, Tang Z, Mikkelsen J C, Yang Y, Xu F, Thiessen T, Lo H K and Poon J K S 2016 Optica 3 1274 [18] Wang J, Bonneau D, Villa M, Silverstone J W, Santagati R, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O'Brien J L and Thompson M G 2016 Optica 3 407 [19] Sibson P, Kennard J E, Stanisic S, Erven C, O'Brien J L and Thompson M G 2017 Optica 4 172 [20] Cai H, Long C M, DeRose C T, Boynton N, Urayama J, Camacho R, Pomerene A, Starbuck A L, Trotter D C, Davids P S and Lentine A L 2017 Opt. Express 25 12282 [21] Avesani M, Calderaro L, Schiavon M, Stanco A, Agnesi C, Santamato A, Zahidy M, Scriminich A, Foletto G, Contestabile G, Chiesa M, Rotta D, Artiglia M, Montanaro A, Romagnoli M, Sorianello V, Vedovato F, Vallone G and Villoresi P 2021 npj Quantum Information 7 93 [22] Geng W, Zhang C, Zheng Y, He J, Zhou C and Kong Y 2019 Opt. Express 27 29045 [23] Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C and Liu A Q 2019 Nat. Photon. 13 839 [24] Aratake A, Tsuzuki K, Ishii M, Saida T, Goh T, Doi Y, Yamazaki H, Fukumitsu T, Yamada T and Mino S 2020 IEICE Trans. Electron. 103 353 [25] Nambu Y, Hatanaka T and Nakamura K 2004 Jpn. J. Appl. Phys. 43 L1109 [26] Ren M, Li X, Zhang J, Wang L, Wang Y, Wu Y and An J 2020 Optics & Laser Technology 122 105837 [27] Li X, Ren M, Zhang J, Wang L, Chen W, Wang Y, Yin X, Wu Y and An J 2021 Photon. Res. 9 222 [28] Lo H K and Preskill J 2007 Quantum Information and Computation 7 431 [29] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|