PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure |
Junyu Chen(陈俊宇)1, Na Zhao(赵娜)1,2, Jiacun Wu(武珈存)1, Kaiyue Wu(吴凯玥)1, Furong Zhang(张芙蓉)1, Junxia Ran(冉俊霞)1, Pengying Jia(贾鹏英)3, Xuexia Pang(庞学霞)3, and Xuechen Li(李雪辰)1,3,† |
1 College of Physics Science&Technology, Hebei University, Baoding 071002, China; 2 School of Mathematics and Physics, Handan University, Handan 056005, China; 3 Institute of Life Science&Green Development, Hebei University, Baoding 071002, China |
|
|
Abstract Plasma jet is an important low-temperature plasma source in extensive application fields. To promote the production of active oxygen species, oxygen is often introduced into the inert working gas. However, the influence of oxygen content on the discharge characteristics of an argon plasma jet is not clear. Aim to this status, an argon plasma jet in a single-electrode geometry is employed to investigate the influence of oxygen concentration (CO) on discharge aspects. Results indicate that with increasing CO (≤ 0.6%), the plume transits from a diffuse morphology to a hollow structure. Electrical and optical measurements reveal that both discharge number per voltage cycle and pulse intensity alter with varying CO. Moreover, discharge morphologies of negative and positive discharges obtained by fast photograph also shift with varying CO. Besides, optical emission spectra are collected to investigate atomic CO, electron density, and electron temperature. The results mentioned above are explained qualitatively, which are believed to be of great significance for the applications of atmospheric pressure plasma jet.
|
Received: 24 January 2022
Revised: 22 February 2022
Accepted manuscript online: 23 March 2022
|
PACS:
|
52.80.Tn
|
(Other gas discharges)
|
|
52.50.Dg
|
(Plasma sources)
|
|
52.70.Kz
|
(Optical (ultraviolet, visible, infrared) measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51977057 and 11875121), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2020201025 and A2019201100), the Natural Science Interdisciplinary Research Program of Hebei University (Grant Nos. DXK202011 and DXK201908), Post-graduate's Innovation Fund Project of Hebei Province, China (Grant Nos. CXZZBS2019023 and CXZZBS2019029), and Postgraduate's Innovation Fund Project of Hebei University (Grant Nos. HBU2021ss063 and HBU2021bs011). |
Corresponding Authors:
Xuechen Li
E-mail: plasmalab@126.com,xcli@mail.hbu.edu.cn
|
Cite this article:
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰) Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure 2022 Chin. Phys. B 31 065205
|
[1] Lu X P, Naidis G V, Laroussi M, Reuter S, Graves D B and Ostrikov K 2016 Phys. Rep. 630 1 [2] Zhao N, Wu K Y, Chen J Y, Jia P Y and Li X C 2021 Spectrosc. Spect. Anal. 41 2644 [3] Dou S, Tao L, Wang R L, Hankari S E, Chen R and Wang S Y 2018 Adv. Mater. 30 1705850 [4] Zhang Y T, Guo Y, Wang D W, Feng Y and Ma T C 2010 Chin. Phys. Lett. 27 068201 [5] Liu Y F, Han J M, Zhang G L, Wang J L, Li M, Yang W B, Liu C Z, Li H Q and Yang S Z 2004 Chin. Phys. Lett. 21 1314 [6] Wang R X, Zhang C, Liu X, Xie Q, Yan P and Tao S 2015 Appl. Surf. Sci. 328 509 [7] Wu J C, Wu K Y, Chen J Y, Song C H, Jia P Y and Li X C 2021 Plasma Sci. Technol. 23 085504 [8] Shi Y C, Li J J, Liu H, Zuo Y G, Bai Y, Sun Z F, Ma D L and Chen G C 2015 Chin. Phys. Lett. 32 088104 [9] Wu M, Uehara S, Wu J, Xiao Y C, Nakajima T and Sato T 2020 J. Phys. D 53 485201 [10] Li X C, Wang B, Jia P Y, Yang L W, Li Y R and Chu J D 2017 Plasma Sci. Technol. 19 115505 [11] Shao T, Wang R X, Zhang C and Yan P 2018 High Volt. 3 14 [12] Nicol M J, Brubaker T R, Honish B J, Simmons A N, Kazemi A, Geissel M A, Whalen C T, Siedlecki C A, Bilén S G, Knecht S D and Kirimanjeswara G S 2020 Sci. Rep. 10 3066 [13] Fan Z Q, Zhong J Y, Li Z W, Zheng Y C, Wang Z Z and Bai S P 2021 J. Phys. D 54 455204 [14] Zhang R, Yu J S, Huang J, Chen G L, Liu X, Chen W, Wang X Q and Li C R 2018 Chin. Phys. B 27 055207 [15] Ning W J, Dai D and Zhang Y H 2019 Appl. Phys. Lett. 114 054104 [16] Athanasopoulos D, Svarnas P, Ladas S, Kennou S and Koutsoukos P 2018 Appl. Phys. Lett. 112 213703 [17] Cheng C, Shen J, Xiao D Z, Xie H B, Lan Y, Fang S D, Meng Y D and Paul K C 2014 Chin. Phys. B 23 075204 [18] Walsh J L, Iza F, Janson N B, Law V J and Kong M G 2010 J. Phys. D 43 075201 [19] Teschke M, Kedzierski J, Finantu-Dinu E G, Korzec D and Engemann J 2005 IEEE Trans. Plasma Sci. 2 310 [20] Lu X P and Laroussi M 2006 J. Appl. Phys. 100 063302 [21] Li S Z, Huang W T, Zhang J L and Wang D Z 2009 Appl. Phys. Lett. 94 111501 [22] Pinchuk M E, Stepanova O M, Astafiev A M, Lazukin A V and Chen Z Q 2019 Appl. Phys. Lett. 114 194103 [23] Xiong Q, Lu X P, Ostrikov K, Xiong Z, Xian Y, Zhou F, Zou C, Hu J, Gong W and Jiang Z 2009 Phys. Plasmas 16 043505 [24] Lu X P, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123 [25] Abdelaziz A A and Kim H H 2021 Plasma Process. Polym. 18 2000190 [26] Abdelaziz A A, Teramoto Y and Kim H H 2022 J. Phys. D 55 065201 [27] Li X C, Lin X T, Wu K Y, Jia P Y, Dong L F and Ran J X 2018 Plasma Process. Polym. 15 1700224 [28] Li X C, Lin X T, Wu K Y, Ren C H, Liu R and Jia P Y 2019 Plasma Sources Sci. Technol. 28 055006 [29] Li X C, Chen J Y, Lin X T, Wu J C, Wu K Y and Jia P Y 2020 Plasma Sources Sci. Technol. 29 065015 [30] Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q and Li X C 2021 Phys. Plasmas 28 073501 [31] Engeln R, Klarenaar B and Guaitella O 2020 Plasma Sources Sci. Technol. 29 063001 [32] Li X C, Chen J Y, Wu K Y, Wu J C, Zhang F R, Zhao N, Jia P Y, Yin Z Q, Wang Y J and Ren C H 2021 Phys. Plasmas 28 103507 [33] Zhao N, Wu K Y, He X R, Chen J Y, Tan X, Wu J C, Ran J X, Jia P Y and Li X C 2022 J. Phys. D 55 015203 [34] Brisset A, Gibson A R, Schröter S, Niemi K, Booth J, Gans T, O'Connell D and Wagenaars E 2021 J. Phys. D 54 285201 [35] Han X, Liu D X, Wang W T, Liu Z J, Guo L, Rong M Z and Kong M G 2018 Phys. Plasmas 25 113506 [36] Fang Z, Zhou Y D and Yao Z Q 2014 IEEE Trans. Plasma Sci. 42 2618 [37] Thiyagarajan M, Sarani A and Nicula C 2013 J. Appl. Phys. 113 233302 [38] Kimura T and Noto M 2006 J. Appl. Phys. 100 063303 [39] Li J, Lei B Y, Wang J, Xu B P, Ran S, Wang Y S, Zhang T Y, Tang J, Zhao W and Duan Y X 2021 Commun. Phys. 4 64 [40] Fang Z, Ruan C, Shao T and Zhang C 2016 Plasma Sources Sci. Technol. 25 01LT01 [41] Wang S, Schulz-von der Gathen V and Döbele H F 2003 Appl. Phys. Lett. 83 3272 [42] Moravej M, Yang X and Hicks R F 2006 J. Appl. Phys. 99 093305 [43] Lim J P and Uhm H S 2007 Phys. Plasmas 14 093504 [44] Kong D L, He F, Yang B Y, Duan Z C, Han R Y, Miao J S, Yan X and Ouyang J T 2021 J. Phys. D 54 405201 [45] Li X C, Jia P Y, Liu Z H, Li L C and Dong L F 2008 Acta Phys. Sin. 57 1001 (in Chinese) [46] Yang L J, Song C H, Zhao N, Zhou S, Wu J C and Jia P Y 2021 Acta Phys. Sin. 70 155201 (in Chinese) [47] Yuan Q H, Wang X M, Yin G Q, Li J and Dong C Z 2016 Contrib. Plasma Phys. 56 870 [48] Xiong Q, Nikiforov A Y, Lu X P and Leys C 2010 J. Phys. D 43 415201 [49] Zhu X M, Pu Y K, Balcon N and Boswell R 2009 J. Phys. D 42 142003 [50] Greb A, Niemi K, O'Connell D and Gans T 2014 Appl. Phys. Lett. 105 234105 [51] Wu J C, Wu K Y, Chen J Y, Song C H, Jia P Y and Li X C 2021 Plasma Sci. Technol. 23 085504 [52] Li X C, Yuan N, Jia P Y, Chang Y Y and Ji Y F 2011 Acta Phys. Sin. 60 125204 (in Chinese) [53] Jiang W M, Tang J, Wang Y S, Zhao W and Duan Y X 2014 Sci. Rep. 4 6323 [54] Li X C, Chang Y Y, Liu R F, Zhao H H and Di C 2013 Acta Phys. Sin. 62 165205 (in Chinese) [55] Starikovskiy A Y and Aleksandrov N L 2020 Plasma Sources Sci. Technol. 29 075004 [56] Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer) [57] Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y and Kang P C 2018 Acta Phys. Sin. 67 075201 (in Chinese) [58] Jia P Y, Gao K, Zhou S, Chen J Y, Wu J C, Wu K Y and Li X C 2021 Plasma Sources Sci. Technol. 30 095021 [59] Zhang B Y, Wang Q, Zhang G X and Liao S S 2014 J. Appl. Phys. 115 043302 [60] Siefert N S, Sands B L and Ganguly B N 2006 Appl. Phys. Lett. 89 011502 [61] Han D M, Liu Y X, Gao F, Liu W Y, Xu J and Wang Y N 2018 Chin. Phys. B 27 065202 [62] Yuan X C, Li H W, Abbas M F, Li X R, Wang Z, Zhang G J and Sun A B 2020 J. Phys. D 53 425204 [63] Ponomarev A A and Aleksandrov N L 2015 Plasma Sources Sci. Technol. 24 035001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|