Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 065206    DOI: 10.1088/1674-1056/ac4233
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A nonlinear wave coupling algorithm and its programing and application in plasma turbulences

Yong Shen(沈勇)1,†, Yu-Hang Shen(沈煜航)2, Jia-Qi Dong(董家齐)3,1, Kai-Jun Zhao(赵开君)4, Zhong-Bing Shi(石中兵)1, and Ji-Quan Li(李继全)1
1 Southwestern Institute of Physics, Chengdu 610041, China;
2 School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
3 Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310013, China;
4 College of Nuclear Science and Engineer, East China University of Technology, Nanchang 330013, China
Abstract  The fully developed turbulence can be regarded as a nonlinear system, with wave coupling inside, which causes the nonlinear energy to transfer, and drives the turbulence to develop further or be suppressed. Spectral analysis is one of the most effective methods to study turbulence system. In order to apply it to the study of the nonlinear wave coupling process of edge plasma turbulence, an efficient algorithm based on spectral analysis technology is proposed to solve the nonlinear wave coupling equation. The algorithm is based on a mandatory temporal static condition with the nonideal spectra separated from the ideal spectra. The realization idea and programing flow are given. According to the characteristics of plasma turbulence, the simulation data are constructed and used to verify the algorithm and its implementation program. The simulation results and experimental results show the accuracy of the algorithm and the corresponding program, which can play a great role in the studying the energy transfer in edge plasma turbulences. As an application, the energy cascade analysis of typical edge plasma turbulence is carried out by using the results of a case calculation. Consequently, a physical picture of the energy transfer in a kind of fully developed turbulence is constructed, which confirms that the energy transfer in this turbulent system develops from lower-frequency region to higher-frequency region and from linear growing wave to damping wave.
Keywords:  bispectral analysis      wave coupling      algorithm      plasma turbulence      energy cascade  
Received:  08 September 2021      Revised:  01 December 2021      Accepted manuscript online:  11 December 2021
PACS:  52.65.-y (Plasma simulation)  
  52.35.Ra (Plasma turbulence)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0301200), the National Natural Science Foundation of China (Grant Nos. 12075077 and 12175055), and the Science and Technology Project of Sichuan Pprovince, China (Grant No. 2020YJ0464).
Corresponding Authors:  Yong Shen     E-mail:  sheny@swip.ac.cn

Cite this article: 

Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全) A nonlinear wave coupling algorithm and its programing and application in plasma turbulences 2022 Chin. Phys. B 31 065206

[1] Buzzicotti M, Aluie H, Biferale L, et al. 2018 Phys. Rev. Fluids 3 034802
[2] Harper K L and Nazarenko S V 2016 New J. Phys. 18 085008
[3] Shi Z B, Nagayama Y, Yamaguchi, et al. 2011 Phys. Plasmas 18 102315
[4] Shen Y, Dong J Q and Xu H B 2018 Acta Phys. Sin. 67 195203 (in Chinese)
[5] Xia H and Shats M G 2003 Phys. Rev. Lett. 91 155001
[6] Ritz C P and Powers E J 1986 Physica D 20 320
[7] Ritz C P, Powers E J, Miksad R W, et al. 1988 Phys. Fluids 31 3577
[8] Ritz C P, Powers E J and Bengsten R D 1989 Phys. Fluids B 1 153
[9] Kim J S, Durst R D, Fonck R J, et al. 1996 Phys. Plasmas 3 3998
[10] Kim K I, Powers E J, Ritz C P, et al. 1987 IEEE J. Ocean Eng. OE-12 568
[11] Shen Y H, Li J Y, Li T, et al. 2020 Phys. Scr. 95 055202
[12] Shen Y H, Li J and Li T 2020 J. Phys. Soc. Jpn. 89 044501
[13] Shen Y, Dong J Q, Shi Z B, et al. 2015 Nucl. Fusion Plasma Phys. 35 193 (in Chinese)
[14] Shen Y, Dong J Q, Shi Z B, et al. 2017 Nucl. Fusion Plasma Phys. 37 1 (in Chinese)
[15] Schmid B, Manz P, Ramisch M, et al. 2017 Phys. Rev. Lett. 118 055001
[16] Cziegler I, Hubbard A E, Hughes J W, et al. 2017 Phys. Rev. Lett. 118 105003
[17] Manz P, Ramisch M, Stroth U, et al. 2008 Plasma Phys. Control. Fusion 50 035008
[18] Manz P, Ramisch M and Stroth U 2009 Phys. Rev. Lett. 103 165004
[19] Shen Y, Dong J Q, Shi Z B, et al. 2019 Nucl. Fusion 59 044001
[20] Xu M, Tynan G R, Diamond P H, et al. 2012 Phys. Rev. Lett. 108 245001
[21] Zhao K J, Lan T, Dong J Q, et al. 2006 Phys. Rev. Lett. 96 255004
[22] Hasegawa A and Wakatani M 1987 Phys. Rev. Lett. 59 1581
[23] Hasegawa A and Mimma K 1978 Phys. Fluids 21 87
[24] Jones F L, Ritz C P, Miksad R W, et al. 1988 Exp. Fluids 6 365
[25] Chen W, Cui Z Y, Sun P, et al. 2007 Chin. Phys. 16 3451
[26] Shen Y, Dong J Q, He H D, et al. 2021 Acta Phys. Sin. 70 185201 (in Chinese)
[27] Zhou Y L, Wang Z H, Xu M, et al. 2016 Chin. Phys. B 25 095201
[28] Wu X K, Wang Z H, Li H D, et al. 2020 Chin. Phys. B 29 065201
[29] Zhao K J, Dong J Q, Yan L W, et al. 2007 Phys. Plasmas 14 122301
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[3] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[4] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[5] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[6] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[7] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[8] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[9] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[10] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[11] Design optimization of broadband extreme ultraviolet polarizer in high-dimensional objective space
Shang-Qi Kuang(匡尚奇), Bo-Chao Li(李博超), Yi Wang(王依), Xue-Peng Gong(龚学鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(7): 077802.
[12] Nonlinear inversion of ultrasonic guided waves for in vivo evaluation of cortical bone properties
Xiaojun Song(宋小军), Tiandi Fan(樊天地), Jundong Zeng(曾俊冬), Qin-Zhen Shi(石勤振), Qiong Huang(黄琼), Meilin Gu(顾美琳), Petro Moilanen, Yi-Fang Li(李义方), and Dean Ta(他得安). Chin. Phys. B, 2022, 31(7): 074301.
[13] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[14] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[15] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
No Suggested Reading articles found!