Please wait a minute...
Chinese Physics, 2004, Vol. 13(2): 190-195    DOI: 10.1088/1009-1963/13/2/012
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Basic characteristics of an atmospheric pressure rf generated plasma jet

Wang Shou-Guo (王守国), Li Hai-Jiang (李海江), Ye Tian-Chun (叶甜春), Zhao Ling-Li (赵玲利)
Microelectronics Research and Development Center, Chinese Academy of Sciences, Beijing 100010, China
Abstract  A plasma jet has been developed which operates using radio frequency (rf) power and produces a stable homogeneous discharge at atmospheric pressure. Its discharge characteristics, especially the dependence of stable discharge operating range on the feed gas, were studied, and the electric parameters such as RMS current, RMS voltage and reflected power were obtained with different gas flows. These studies indicate that there is an optimum range of operation of the plasma jet for a filling with a gas mixture of He and O$_2$. Two "failure" modes of the discharge are identified. One is a filamentary arc when the input power is raised above a critical level, another is that the discharge disappears gradually as the addition of O$_2$ approaches 3.2%. Possible explanations for the two failure modes have been given. The current and voltage waveform measurements show that there is a clear phase shift between normal and failure modes. In addition, I-V curves as a function of pure helium and for 1% addition of oxygen have been studied.
Keywords:  atmospheric pressure      plasma jet      discharge model  
Received:  20 May 2003      Revised:  10 October 2003      Accepted manuscript online: 
PACS:  52.75.-d (Plasma devices)  
  52.80.Pi (High-frequency and RF discharges)  

Cite this article: 

Wang Shou-Guo (王守国), Li Hai-Jiang (李海江), Ye Tian-Chun (叶甜春), Zhao Ling-Li (赵玲利) Basic characteristics of an atmospheric pressure rf generated plasma jet 2004 Chinese Physics 13 190

[1] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[2] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[3] Effects of secondary electron emission on plasma characteristics in dual-frequency atmospheric pressure helium discharge by fluid modeling
Yi-Nan Wang(王一男), Shuai-Xing Li(李帅星), Yue Liu(刘悦), Li Wang(王莉). Chin. Phys. B, 2019, 28(2): 025202.
[4] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[5] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[6] Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes
Cheng Wang(王城), Zelong Zhang(张泽龙), Haichao Cui(崔海超), Weiluo Xia(夏维珞), Weidong Xia(夏维东). Chin. Phys. B, 2017, 26(8): 085207.
[7] Numerical study on the gas heating mechanism in pulse-modulated radio-frequency glow discharge
Qi Wang(王奇), Xiao-Li Yu(于晓丽), De-Zhen Wang(王德真). Chin. Phys. B, 2017, 26(3): 035201.
[8] LIF diagnostics of hydroxyl radical in a methanol containing atmospheric-pressure plasma jet
Mu-Yang Qian(钱沐杨), San-Qiu Liu(刘三秋), Xue-Kai Pei(裴学凯), Xin-Pei Lu(卢新培), Jia-Liang Zhang(张家良), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(10): 105205.
[9] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[10] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[11] Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons
Chen Zhao-Quan (陈兆权), Yin Zhi-Xiang (殷志祥), Xia Guang-Qing (夏广庆), Hong Ling-Li (洪伶俐), Hu Ye-Lin (胡业林), Liu Ming-Hai (刘明海), Hu Xi-Wei (胡希伟), A. A. Kudryavtsev. Chin. Phys. B, 2015, 24(2): 025203.
[12] A computational modeling study on the helium atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Liu San-Qiu (刘三秋), Wang Zhen-Dong (王震东), Lv Yan (吕燕), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125202.
[13] A two-dimensional model of He/O2 atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Chen Xiao-Chang (陈小昌), Liu San-Qiu (刘三秋), Yan Wen (晏雯), Liu Fu-Cheng (刘富成), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125203.
[14] Three different low-temperature plasma-based methods for hydrophilicity improvement of polyethylene films at atmospheric pressure
Chen Guang-Liang (陈光良), Zheng Xu (郑旭), Huang Jun (黄俊), Si Xiao-Lei (司晓蕾), Chen Zhi-Li (陈致力), Xue Fei (薛飞), Sylvain Massey. Chin. Phys. B, 2013, 22(11): 115206.
[15] Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations
Li Xue-Chen(李雪辰), Jia Peng-Ying(贾鹏英), Yuan-Ning(袁宁), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(4): 045204.
No Suggested Reading articles found!