Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050203    DOI: 10.1088/1674-1056/ac5986

Gauss quadrature based finite temperature Lanczos method

Jian Li(李健) and Hai-Qing Lin(林海青)
Beijing Computational Science Research Center, Beijing 100193, China
Abstract  The finite temperature Lanczos method (FTLM), which is an exact diagonalization method intensively used in quantum many-body calculations, is formulated in the framework of orthogonal polynomials and Gauss quadrature. The main idea is to reduce finite temperature static and dynamic quantities into weighted summations related to one- and two-dimensional Gauss quadratures. Then lower order Gauss quadrature, which is generated from Lanczos iteration, can be applied to approximate the initial weighted summation. This framework fills the conceptual gap between FTLM and kernel polynomial method, and makes it easy to apply orthogonal polynomial techniques in the FTLM calculation.
Keywords:  exact diagonalization      Lanczos method      orthogonal polynomials  
Received:  12 January 2022      Revised:  15 February 2022      Accepted manuscript online: 
PACS:  02.60.Dc (Numerical linear algebra)  
  02.60.-x (Numerical approximation and analysis)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.40.Mg (Numerical simulation studies)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos.11734002 and U1930402).All numerical computations were carried out on the Tianhe-2JK at the Beijing Computational Science Research Center (CSRC).
Corresponding Authors:  Hai-Qing Lin,     E-mail:
About author:  2022-3-2

Cite this article: 

Jian Li(李健) and Hai-Qing Lin(林海青) Gauss quadrature based finite temperature Lanczos method 2022 Chin. Phys. B 31 050203

[1] Lin H Q 1990 Phys. Rev. B 42 6561
[2] Lin H Q and Gubernatis J 1993 Comput. Phys. 7 400
[3] Zhang J M and Dong R X 2010 European Journal of Physics 31 591
[4] Nataf P and Mila F 2014 Phys. Rev. Lett. 113 127204
[5] Schollwöck U 2005 Rev. Mod. Phys. 77 259
[6] Schollwöck U 2011 Annals of Physics 326 96
[7] White S R 1992 Phys. Rev. Lett. 69 2863
[8] Gubernatis J, Kawashima N and Werner P 2016 Quantum Monte Carlo Methods: Algorithms for Lattice Models (Cambridge University Press)
[9] Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J and Sugar R L 1990 Phys. Rev. B 41 9301
[10] Mak C H and Chandler D 1990 Phys. Rev. A 41 5709
[11] Lanczos C 1950 Journal of Research of the National Bureau of Standards 45 255
[12] PAIGE C C 1972 IMA Journal of Applied Mathematics 10 373
[13] Golub G and Underwood R 1977 The block lanczos method for computing eigenvalues Mathematical Software ed Rice J R (Academic Press) pp. 361-377
[14] Komzsik L 2003 The Lanczos method: evolution and application (SIAM)
[15] Weiße A, Wellein G, Alvermann A and Fehske H 2006 Rev. Mod. Phys. 78 275
[16] Weiße A 2009 Phys. Rev. Lett. 102 150604
[17] Silver R N and Röder H 1997 Phys. Rev. E 56 4822
[18] Silver R and Röder H 1994 International Journal of Modern Physics C 5 735
[19] Prelovšek P and Bonča J 1994 Phys. Rev. B 49 5065
[20] Prelovšek P and Bonča J 2013 Ground State and Finite Temperature Lanczos Methods (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 1-30
[21] Schlúter H, Gayk F, Schmidt H J, Honecker A and Schnack J 2021 Zeitschrift fúr Naturforschung A 76 823
[22] Schnack J, Richter J and Steinigeweg R 2020 Phys. Rev. Res. 2 013186
[23] Golub G H and Meurant G A 2010 Matrices, moments, and quadrature with applications Princeton series in applied mathematics (Princeton, N.J: Princeton University Press)
[24] Golub G H and Van Loan C F 2013 Matrix computations 4th ed Johns Hopkins studies in mathematical sciences (Baltimore, Md: Johns Hopkins Univ. Press)
[25] Stoer J and Bulirsch R 2002 Introduction to Numerical Analysis (New York, NY: Springer New York)
[26] Golub G H and Welsch J H 1969 Mathematics of Computation 23 221
[27] Jie S and Tao T 2006 Spectral and High-Order Methods with Applications Mathematics Monograph Series 3 (Beijing: Science Press)
[28] It can be stated more rigorously that higher order expansion of f does not contribute to the result of u f(H)u. All functions $\hat f$ with same expansion up to order N-1 form a equivalent class as f.
[29] Same as Gauss quadrature in one-dimensional case, higher order expansion of C(x, y) does not contribute to u f(H)Ag(H)v$.
[30] Skilling J (ed) 1989 Maximum Entropy and Bayesian Methods (Springer Netherlands)
[31] Hewitt E and Hewitt R E 1979 Archive for History of Exact Sciences 21 129
[32] Aichhorn M, Daghofer M, Evertz H G and von der Linden W 2003 Phys. Rev. B 67 161103
[33] Lieb E, Schultz T and Mattis D 1961 Annals of Physics 16 407
[34] Niemeijer T 1967 Physica 36 377
[1] Generalized Lanczos method for systematic optimization of tensor network states
Rui-Zhen Huang(黄瑞珍), Hai-Jun Liao(廖海军), Zhi-Yuan Liu(刘志远), Hai-Dong Xie(谢海东), Zhi-Yuan Xie(谢志远), Hui-Hai Zhao(赵汇海), Jing Chen(陈靖), Tao Xiang(向涛). Chin. Phys. B, 2018, 27(7): 070501.
[2] Vibration and buckling analyses of nanobeams embedded in an elastic medium
S Chakraverty, Laxmi Behera. Chin. Phys. B, 2015, 24(9): 097305.
[3] Surface states in crystals with low-index surfaces
Wang Hui-Ping (王会平), Tao Rui-Bao (陶瑞宝). Chin. Phys. B, 2015, 24(11): 117301.
No Suggested Reading articles found!