High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲)1, Yongsheng Hu(胡永升)1, Wenxue Zhong(钟文学)1, and Aixi Chen(陈爱喜)2,†
1 Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China; 2 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract We present preparation of asymmetric grating with higher diffraction efficiency in quantum dot molecules by combining the tunneling effect and parity-time antisymmetry. In the presence of tunneling between two quantum dots, the system exhibits the striking PT antisymmetry via spatially modulating the driving field and the detuning with respect to the driven transition. For this reason, the asymmetric grating could be achieved. The results show that the diffraction efficiency can be adjustable via changing the driving intensity, detuning, tunneling strength, and interaction length, and then the high-order diffraction can be reached. The scheme provides a feasible way to obtain the direction-controlled diffraction grating, which can be helpful for optical information processing and realization of controllable optical self-image.
(Coherent control of atomic interactions with photons)
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 11905064, 11775190 and 11565013) and the Scientific Research Foundation of Jiangxi Provincial Education Department, China (Grant No. GJJ200624).
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜) High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules 2022 Chin. Phys. B 31 014202
[1] Palmer C and Loewen E 2005 Diffraction Grating Handbook (New York: Newport Corp, Rochester) [2] Harris S E 1997 Phys. Today50 36 [3] Wang D, Wu J Z and Zhang J X 2016 Chin. Phys. B25 064202 [4] Ling H Y, Li Y Q and Xiao M 1998 Phys. Rev. A57 1338 [5] Yuan J P, Wu C H, Li Y H, Wang L R, Zhang Y, Xiao L T and Jia S T 2019 Front. Phys.14 52603 [6] Dong Y B, Li J Y and Zhou Z Y 2017 Chin. Phys. B26 014202 [7] Bajcsy M, Zibrov A S and Lukin M D 2003 Nature426 638 [8] Ru J M, Wu Z K, Zhang Y G, Wen Fe and Gu Y Z 2020 Front. Phys.15 52503 [9] Brown A W and Xiao M 2005 Opt. Lett.30 699 [10] Araujo L E E 2010 Opt. Lett.35 977 [11] Hu Y S, Cheng G L and Chen A X 2020 Opt. Express28 29805 [12] Wan R G, Kou J, Jiang L and Gao J Y 2011 Phys. Rev. A83 033824 [13] Cheng G L, Zhong W X and Chen A X 2015 Opt. Express23 9870 [14] Liu Z Z, Chen Y Y, Yuan J Y and Wan R G 2017 Chin. Phys. B26 124209 [15] Wang L, Zhou F X, Guo H J, Niu Y P and Gong S Q 2016 Chin. Phys. B25 114205 [16] Bender C M 2007 Rep. Prog. Phys.70 947 [17] Ganainy R E, Makris K, Christodoulides D and Musslimani Z H 2007 Opt. Lett.32 2632 [18] Makris K G, Ganainy R E, Christodoulides D and Musslimani Z H 2008 Phys. Rev. Lett.100 103904 [19] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature488 167 [20] Ge L and Türeci H E 2013 Phys. Rev. A88 053810 [21] Antonosyan D A, Solntsev A S and Sukhorukov A A 2015 Opt. Lett.40 4575 [22] Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L and Xiao Y 2016 Nat. Phys.12 1139 [23] Jiang Y, Mei Y, Zuo Y, Zhai Y, Li J, Wen J and Du S 2019 Phys. Rev. Lett.123 193604 [24] Hang C, Huang G, and Konotop V V 2013 Phys. Rev. Lett.110 083604 [25] Sheng J, Miri M A, Christodoulides D N and Xiao M 2013 Phys. Rev. A88 041803 [26] Zhang Z, Zhang Y, Sheng J, Yang L, Miri M A, Christodoulides D N, He B, Zhang Y and Xiao M 2016 Phys. Rev. Lett.117 123601 [27] Liu Y M, Gao F, Fan C H and Wu J H 2017 Opt. Lett.42 4283 [28] Shui T, Yang W X, Liu S, Li L and Zhu Z 2018 Phys. Rev. A97 033819 [29] Tian S C, Wan R G, Wang L J, Shu S L, Lu H Y, Zhang X, Tong C Z, Feng J L, Xiao M and Wang L J 2018 Opt. Express26 32918 [30] Hang C, Li W and Huang G 2019 Phys. Rev. A100 043807 [31] Wu J H, Artoni M and Rocca G L 2014 Phys. Rev. Lett.113 123004 [32] Wu J H, Artoni M and Rocca G L 2015 Phys. Rev. A91 033811 [33] Wu J H, Artoni M and Rocca G L 2017 Phys. Rev. A95 053862 [34] Wang X and Wu J H 2016 Opt. Express24 4289 [35] Yang F, Liu Y C and You L 2017 Phys. Rev. A96 053845 [36] Jin L 2018 Phys. Rev. A98 022117 [37] Konotop V V and Zezyulin D A 2018 Phys. Rev. Lett.120 123902 [38] Ma D, Yu D, Zhao X D and Qian J 2019 Phys. Rev. A99 033826 [39] Shui T, Yang W X, Li L and Wang X 2019 Opt. Lett.44 2089 [40] Michler P 2009 Single Semiconductor Quantum Dots (Berlin: Springer) [41] Lodahl P, Mahmoodian S and Stobbe S 2015 Rev. Mod. Phys.87 347 [42] Li X, Wu Y, Steel D, Gammon D, Stievater T, Katzer D, Park D, Piermarocchi C and Sham L 2003 Science301 809 [43] Phillips M C, Wang H, Rumyantsev I, Kwong N H, Takayama R and Binder R 2003 Phys. Rev. Lett.91 183602 [44] Nielsen D and Chuang S L 2010 Phys. Rev. B81 035305 [45] Muller A, Flagg E B, Bianucci P, Wang X, Deppe D G, Ma W, Zhang J, Salamo G, Xiao M and Shih C K 2007 Phys. Rev. Lett.99 187402 [46] Abbas M and Qamar S 2020 Phys. Rev. A101 023821 [47] Villas-Boas J, Govorov A and Ulloa S E 2004 Phys. Rev. B69 125342 [48] Ramírez H Y and Cheng S J 2010 Phys. Rev. Lett.104 206402 [49] Krenner H J, Sabathil M, Clark E C, Kress A, Schuh D, Bichler M, Abstreiter G and Finley J J 2005 Phys. Rev. Lett.94 057402 [50] Müller K, Bechtold A, Ruppert C, Zecherle M, Reithmaier G, Bichler M, Krenner H J, Abstreiter G, Holleitner A W, Villas-Boas J M, Betz M and Finley J J 2012 Phys. Rev. Lett.108 197402 [51] Ba N, Fei J Y, Li D F, Zhong X, Wang D, Wang L, Wang H H and Bao Q Q 2020 Chin. Phys. B29 034204 [52] Borges H, Sanz L, Villas-Boas J, Neto O D and Alcalde A 2012 Phys. Rev. B85 115425 [53] Li Z, Cheng Y, Wei J, Zheng X and Yan Y 2018 Phys. Rev. B98 115133 [54] Peng Y, Yang A, Chen B, Li L, Liu S and Guo H 2016 Appl. Phys. Lett.109 141101 [55] Borges H, Alcalde A and Ulloa S E 2014 Phys. Rev. B90 205311 [56] Mahdavi M, Sabegh Z A, Mohammadi M, Mahmoudi M and Hamedi H R 2020 Phys. Rev. A101 063811 [57] Kim J, Chuang S L, Ku P C and Chang-Hasnain C J 2004 J. Phys.: Condens. Matter16 S3727 [58] Ortner G, Schwab M, Borri P, Langbein W, Woggon U, Bayer M, Fafard S, Wasilewski Z, Hawrylak P, Lyanda-Geller Y B, Reinecke T L and Forchel A 2004 Physica E25 249
[1]
From microelectronics to spintronics and magnonics Xiu-Feng Han(韩秀峰), Cai-Hua Wan(万蔡华), Hao Wu(吴昊), Chen-Yang Guo(郭晨阳), Ping Tang(唐萍), Zheng-Ren Yan(严政人), Yao-Wen Xing(邢耀文), Wen-Qing He(何文卿), and Guo-Qiang Yu(于国强). Chin. Phys. B, 2022, 31(11): 117504.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.