Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 123204    DOI: 10.1088/1674-1056/ac0130

Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks

Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新)
College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
Abstract  Based on the multiconfiguration Dirac-Hartree-Fock (MCDHF) method, similar models are employed to simultaneously calculate the first-order and second-order Zeeman coefficients as well as the hyperfine interaction constants of the related energy levels of 27Al+ and its logical ions 9Be+ and 25Mg+ in the 27Al+ optical clock. With less than 0.34% deviations from experimental values in Zeeman coefficients of 27Al+, these calculated parameters will be of great help for better evaluation of the systematic uncertainty. We also calculate the isotope shift parameters of the related energy levels, which could extend our knowledge and understanding of nuclear properties of these ions.
Keywords:  Zeeman effect      isotope shift      aluminum ion optical clock      MCDHF method  
Received:  23 February 2021      Revised:  10 May 2021      Accepted manuscript online:  14 May 2021
PACS:  32.60.+i (Zeeman and Stark effects)  
  31.30.Gs (Hyperfine interactions and isotope effects)  
  32.10.Fn (Fine and hyperfine structure) (High-precision calculations for few-electron (or few-body) atomic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604385 and 91536106), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50743), and the Research Project of the National University of Defense Technology (Grant No. ZK17-03-11).
Corresponding Authors:  Hong-Xin Zou     E-mail:

Cite this article: 

Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新) Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks 2021 Chin. Phys. B 30 123204

[1] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[2] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett. 113 210801
[3] Chou C, Hume D, Koelemeij J, Wineland D and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[4] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
[5] Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, Baynes F N, Margolis H S, Zampaolo M, Thoumany P, Pizzocaro M, Rauf B, Bregolin F, Tampellini A, Barbieri P, Zucco M, Costanzo G A, Clivati C, Levi F and Calonico D 2018 Nat. Phys. 14 437
[6] Graham P W, Hogan J M, Kasevich M A and Rajendran S 2013 Phys. Rev. Lett. 110 171102
[7] Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W and Derevianko A 2017 Nat. Commun. 8 1195
[8] Kennedy C J, Oelker E, Robinson J M, Bothwell T, Kedar D, Milner W R, Marti G E, Derevianko A and Ye J 2020 Phys. Rev. Lett. 125 201302
[9] Brewer S M, Chen J-S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[10] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[11] Schmidt P O 2005 Science 309 749
[12] Rosenband T, Schmidt P, Hume D, Itano W, Fortier T, Stalnaker J, Kim K, Diddams S, Koelemeij J, Bergquist J and Wineland D 2007 Phys. Rev. Lett. 98 220801
[13] Bernard J E, Marmet L and Madej A A 1998 Opt. Commun. 150 170
[14] Brewer S M, Chen J-S, Beloy K, Hankin A M, Clements E R, Chou C W, McGrew W F, Zhang X, Fasano R J, Nicolodi D, Leopardi H, Fortier T M, Diddams S A, Ludlow A D, Wineland D J, Leibrandt D R and Hume D B 2019 Phys. Rev. A 100 013409
[15] Gan H C J, Maslennikov G, Tseng K W, Tan T R, Kaewuam R, Arnold K J, Matsukevich D and Barrett M D 2018 Phys. Rev. A 98 032514
[16] Zhang T, Xie L, Li J and Lu Z 2017 Phys. Rev. A 96 012514
[17] Kumar R, Chattopadhyay S, Angom D and Mani B K 2021 Phys. Rev. A 103 022801
[18] Yerokhin V A 2008 Phys. Rev. A 78 012513
[19] Puchalski M and Pachucki K 2014 Phys. Rev. A 89 032510
[20] Puchalski M and Pachucki K 2009 Phys. Rev. A 79 032510
[21] Yan Z C, Nörtershäuser W and Drake G W F 2008 Phys. Rev. Lett. 100 243002
[22] Puchalski M and Pachucki K 2008 Phys. Rev. A 78 052511
[23] Sur C, Sahoo B K, Chaudhuri R K, Das B P and Mukherjee D 2005 Eur. Phys. J. D 32 25
[24] Mani B K and Angom D 2010 Phys. Rev. A 81 042514
[25] Tupitsyn I I, Shabaev V M, Crespo López-Urrutia J R, Draganić I, Soria Orts R and Ullrich J 2003 Phys. Rev. A 68 022511
[26] Safronova M S and Johnson W R 2001 Phys. Rev. A 64 052501
[27] Berengut J C, Dzuba V A and Flambaum V V 2003 Phys. Rev. A 68 022502
[28] Korol V A and Kozlov M 2007 Phys. Rev. A 76 022103
[29] Yu G H, Yan H, Gao D L, Zhao P Y, Liu H, Zhu X L and Yang W 2018 Acta Phys. Sin. 67 013101 (in Chinese)
[30] Grant I P 2007 Relativistic quantum theory of atoms and molecules:theory and computation (New York:Springer) pp. 259-388
[31] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197
[32] Andersson M and Jönsson P 2008 Comput. Phys. Commun. 178 156
[33] Stone N J 2005 At. Data Nucl. Data Tables 90 75
[34] Jönsson P, Parpia F A and Fischer C F 1996 Comput. Phys. Commun. 96 301
[35] Cheng K T and Childs W J 1985 Phys. Rev. A 31 2775
[36] Li W, Grumer J, Brage T and Jönsson P 2020 Comput. Phys. Commun. 253 107211
[37] Palmer C W P 1987 J. Phys. B:At. Mol. Phys. 20 5987
[38] Blundell S A, Baird P E G, Palmer C W P, Stacey D N and Woodgate G K 1987 J. Phys. B:At. Mol. Phys. 20 3663
[39] Angeli I and Marinova K P 2013 At. Data Nucl. Data Tables 99 69
[40] Ekman J, Jönsson P, Godefroid M, Nazé C, Gaigalas G and Bieroń J 2019 Comput. Phys. Commun. 235 433
[41] Froese Fischer C, Brage T and Jönsson P 1997 Computational atomic structure:an MCHF approach (London:Institute of Physics Publishing) pp. 67-86
[42] Wineland D J, Bollinger J J and Itano W M 1983 Phys. Rev. Lett. 50 628
[43] Bollinger J J, Wells J S, Wineland D J and Itano W M 1985 Phys. Rev. A 31 2711
[44] Itano W M and Wineland D J 1981 Phys. Rev. A 24 1364
[45] Nörtershäuser W, Tiedemann D, Žáková M, Andjelkovic Z, Blaum K, Bissell M L, Cazan R, Drake G W F, Geppert Ch, Kowalska M, Krämer J, Krieger A, Neugart R, Sánchez R, Schmidt-Kaler F, Yan Z C, Yordanov D T and Zimmermann C 2009 Phys. Rev. Lett. 102 062503
[46] Xu Z T, Deng K, Che H, Yuan W H, Zhang J and Lu Z H 2017 Phys. Rev. A 96 052507
[47] Carette T and Godefroid M R 2011 Phys. Rev. A 83 062505
[48] Zhang T X, Li J G and Liu J P 2018 Acta Phys. Sin. 67 053101 (in Chinese)
[49] Guggemos M, Guevara-Bertsch M, Heinrich D, Herrera-Sancho O A, Colombe Y, Blatt R and Roos C F 2019 New J. Phys. 21 103003
[50] Batteiger V, Knünz S, Herrmann M, Saathoff G, Schüssler H A, Bernhardt B, Wilken T, Holzwarth R, Hänsch T W and Udem Th 2009 Phys. Rev. A 80 022503
[51] Drullinger R E, Wineland D J and Bergquist J C 1980 Appl. Phys. 22 365
[52] Žáková M, Andjelkovic Z, Bissell M L, Blaum K, Drake G W F, Geppert C, Kowalska M, Krämer J, Krieger A, Lochmann M, Neff T, Neugart R, Nörtershäuser W, Sánchez R, Schmidt-Kaler F, Tiedemann D, Yan Z C, Yordanov D T and Zimmermann C 2010 J. Phys. G:Nucl. Part. Phys. 37 055107
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[3] Isotope shift of the 2s 2S1/2 $\rightarrow$ 2p 2P1/2,3/2 transitions of Li-like Ca ions
Denghong Zhang(张登红), Fangjun Zhang(张芳军), Xiaobin Ding(丁晓彬), and Chenzhong Dong(董晨钟). Chin. Phys. B, 2021, 30(4): 043102.
[4] Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D-D experiment on EAST tokamak
Wei Gao(高伟), Juan Huang(黄娟), Jianxun Su(宿建勋), Jing Fu(付静), Yingjie Chen(陈颖杰), Wei Gao(高伟), Zhenwei Wu(吴振伟), and EAST Team. Chin. Phys. B, 2021, 30(2): 025201.
[5] Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state
Defu Wang(王得富), Xuping Shao(邵旭萍), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2021, 30(11): 113301.
[6] Forbidden transition properties of fine-structure 2p3 4S3/2-2p3 2D3/2,5/2 for nitrogen-like ions
Xiao-Kang He(何晓康), Jian-Peng Liu(刘建鹏), Xiang Zhang(张祥), Yong Shen(沈咏), Hong-Xin Zou(邹宏新). Chin. Phys. B, 2018, 27(8): 083102.
[7] High quality electromagnetically induced transparency spectroscopy of 87Rb in a buffer gas cell with a magnetic field
Hong Cheng(成红), Han-Mu Wang(王汉睦), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Jun Luo(罗军), Hong-Ping Liu(刘红平). Chin. Phys. B, 2017, 26(7): 074204.
[8] Investigation of the nonlinear CPT spectrum of 87Rb and its application for large dynamic magnetic measurement
Chi Xu(徐迟), Shi-Guang Wang(王时光), Yong Hu(胡勇), Yan-Ying Feng(冯焱颖), Li-Jun Wang(王力军). Chin. Phys. B, 2017, 26(6): 064203.
[9] Analysis of the Zeeman effect on Dα spectra on the EAST tokamak
Wei Gao(高伟), Juan Huang(黄娟), Chengrui Wu(吴承瑞), Zong Xu(许棕), Yumei Hou(侯玉梅), Zhao Jin(金钊), Yingjie Chen(陈颖杰), Pengfei Zhang(张鹏飞), Ling Zhang(张凌), Zhenwei Wu(吴振伟), EAST Team. Chin. Phys. B, 2017, 26(4): 045203.
[10] Uncertainty evaluation of the isotope shift factors for 2s2p3,1P1o-2s21S0 transitions in B II
Jianpeng Liu(刘建鹏), Jiguang Li(李冀光), Hongxin Zou(邹宏新). Chin. Phys. B, 2017, 26(2): 023104.
[11] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
[12] Theoretical investigation on forbidden transition properties of fine-structure splitting in 2D state for K-like ions with 26 ≤ Z ≤ 36
Jian-Peng Liu(刘建鹏), Cheng-Bin Li(李承斌), Hong-Xin Zou(邹宏新). Chin. Phys. B, 2017, 26(10): 103201.
[13] Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb
Jian-Hong Wan(万剑宏), Chang Liu(刘畅), Yan-Hui Wang(王延辉). Chin. Phys. B, 2016, 25(4): 044204.
[14] Isotope shift calculations for D lines of stable and short-lived lithium nuclei
Geng-Hua Yu(余庚华), Peng-Yi Zhao(赵朋义), Bing-Ming Xu(徐炳明), Wei Yang(杨维), Xiao-Ling Zhu(朱晓玲). Chin. Phys. B, 2016, 25(11): 113102.
[15] Weak- and hyperfine-interaction-induced 1s2s 1S0→1s2 1S0 E1 transition rates of He-like ions
Laima Radžiūtė, Erikas Gaidamauskas, Gediminas Gaigalas, Li Ji-Guang (李冀光), Dong Chen-Zhong (董晨钟), Per Jönsson. Chin. Phys. B, 2015, 24(4): 043103.
No Suggested Reading articles found!