Abstract Based on the multiconfiguration Dirac-Hartree-Fock (MCDHF) method, similar models are employed to simultaneously calculate the first-order and second-order Zeeman coefficients as well as the hyperfine interaction constants of the related energy levels of 27Al+ and its logical ions 9Be+ and 25Mg+ in the 27Al+ optical clock. With less than 0.34% deviations from experimental values in Zeeman coefficients of 27Al+, these calculated parameters will be of great help for better evaluation of the systematic uncertainty. We also calculate the isotope shift parameters of the related energy levels, which could extend our knowledge and understanding of nuclear properties of these ions.
(High-precision calculations for few-electron (or few-body) atomic systems)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604385 and 91536106), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50743), and the Research Project of the National University of Defense Technology (Grant No. ZK17-03-11).
Corresponding Authors:
Hong-Xin Zou
E-mail: hxzou@nudt.edu.cn
Cite this article:
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新) Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks 2021 Chin. Phys. B 30 123204
[1] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science319 1808 [2] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett.113 210801 [3] Chou C, Hume D, Koelemeij J, Wineland D and Rosenband T 2010 Phys. Rev. Lett.104 070802 [4] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science329 1630 [5] Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, Baynes F N, Margolis H S, Zampaolo M, Thoumany P, Pizzocaro M, Rauf B, Bregolin F, Tampellini A, Barbieri P, Zucco M, Costanzo G A, Clivati C, Levi F and Calonico D 2018 Nat. Phys.14 437 [6] Graham P W, Hogan J M, Kasevich M A and Rajendran S 2013 Phys. Rev. Lett.110 171102 [7] Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W and Derevianko A 2017 Nat. Commun.8 1195 [8] Kennedy C J, Oelker E, Robinson J M, Bothwell T, Kedar D, Milner W R, Marti G E, Derevianko A and Ye J 2020 Phys. Rev. Lett.125 201302 [9] Brewer S M, Chen J-S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett.123 033201 [10] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys.87 637 [11] Schmidt P O 2005 Science309 749 [12] Rosenband T, Schmidt P, Hume D, Itano W, Fortier T, Stalnaker J, Kim K, Diddams S, Koelemeij J, Bergquist J and Wineland D 2007 Phys. Rev. Lett.98 220801 [13] Bernard J E, Marmet L and Madej A A 1998 Opt. Commun.150 170 [14] Brewer S M, Chen J-S, Beloy K, Hankin A M, Clements E R, Chou C W, McGrew W F, Zhang X, Fasano R J, Nicolodi D, Leopardi H, Fortier T M, Diddams S A, Ludlow A D, Wineland D J, Leibrandt D R and Hume D B 2019 Phys. Rev. A100 013409 [15] Gan H C J, Maslennikov G, Tseng K W, Tan T R, Kaewuam R, Arnold K J, Matsukevich D and Barrett M D 2018 Phys. Rev. A98 032514 [16] Zhang T, Xie L, Li J and Lu Z 2017 Phys. Rev. A96 012514 [17] Kumar R, Chattopadhyay S, Angom D and Mani B K 2021 Phys. Rev. A103 022801 [18] Yerokhin V A 2008 Phys. Rev. A78 012513 [19] Puchalski M and Pachucki K 2014 Phys. Rev. A89 032510 [20] Puchalski M and Pachucki K 2009 Phys. Rev. A79 032510 [21] Yan Z C, Nörtershäuser W and Drake G W F 2008 Phys. Rev. Lett.100 243002 [22] Puchalski M and Pachucki K 2008 Phys. Rev. A78 052511 [23] Sur C, Sahoo B K, Chaudhuri R K, Das B P and Mukherjee D 2005 Eur. Phys. J. D32 25 [24] Mani B K and Angom D 2010 Phys. Rev. A81 042514 [25] Tupitsyn I I, Shabaev V M, Crespo López-Urrutia J R, Draganić I, Soria Orts R and Ullrich J 2003 Phys. Rev. A68 022511 [26] Safronova M S and Johnson W R 2001 Phys. Rev. A64 052501 [27] Berengut J C, Dzuba V A and Flambaum V V 2003 Phys. Rev. A68 022502 [28] Korol V A and Kozlov M 2007 Phys. Rev. A76 022103 [29] Yu G H, Yan H, Gao D L, Zhao P Y, Liu H, Zhu X L and Yang W 2018 Acta Phys. Sin.67 013101 (in Chinese) [30] Grant I P 2007 Relativistic quantum theory of atoms and molecules:theory and computation (New York:Springer) pp. 259-388 [31] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun.184 2197 [32] Andersson M and Jönsson P 2008 Comput. Phys. Commun.178 156 [33] Stone N J 2005 At. Data Nucl. Data Tables90 75 [34] Jönsson P, Parpia F A and Fischer C F 1996 Comput. Phys. Commun.96 301 [35] Cheng K T and Childs W J 1985 Phys. Rev. A31 2775 [36] Li W, Grumer J, Brage T and Jönsson P 2020 Comput. Phys. Commun.253 107211 [37] Palmer C W P 1987 J. Phys. B:At. Mol. Phys.20 5987 [38] Blundell S A, Baird P E G, Palmer C W P, Stacey D N and Woodgate G K 1987 J. Phys. B:At. Mol. Phys.20 3663 [39] Angeli I and Marinova K P 2013 At. Data Nucl. Data Tables99 69 [40] Ekman J, Jönsson P, Godefroid M, Nazé C, Gaigalas G and Bieroń J 2019 Comput. Phys. Commun.235 433 [41] Froese Fischer C, Brage T and Jönsson P 1997 Computational atomic structure:an MCHF approach (London:Institute of Physics Publishing) pp. 67-86 [42] Wineland D J, Bollinger J J and Itano W M 1983 Phys. Rev. Lett.50 628 [43] Bollinger J J, Wells J S, Wineland D J and Itano W M 1985 Phys. Rev. A31 2711 [44] Itano W M and Wineland D J 1981 Phys. Rev. A24 1364 [45] Nörtershäuser W, Tiedemann D, Žáková M, Andjelkovic Z, Blaum K, Bissell M L, Cazan R, Drake G W F, Geppert Ch, Kowalska M, Krämer J, Krieger A, Neugart R, Sánchez R, Schmidt-Kaler F, Yan Z C, Yordanov D T and Zimmermann C 2009 Phys. Rev. Lett.102 062503 [46] Xu Z T, Deng K, Che H, Yuan W H, Zhang J and Lu Z H 2017 Phys. Rev. A96 052507 [47] Carette T and Godefroid M R 2011 Phys. Rev. A83 062505 [48] Zhang T X, Li J G and Liu J P 2018 Acta Phys. Sin.67 053101 (in Chinese) [49] Guggemos M, Guevara-Bertsch M, Heinrich D, Herrera-Sancho O A, Colombe Y, Blatt R and Roos C F 2019 New J. Phys.21 103003 [50] Batteiger V, Knünz S, Herrmann M, Saathoff G, Schüssler H A, Bernhardt B, Wilken T, Holzwarth R, Hänsch T W and Udem Th 2009 Phys. Rev. A80 022503 [51] Drullinger R E, Wineland D J and Bergquist J C 1980 Appl. Phys.22 365 [52] Žáková M, Andjelkovic Z, Bissell M L, Blaum K, Drake G W F, Geppert C, Kowalska M, Krämer J, Krieger A, Lochmann M, Neff T, Neugart R, Nörtershäuser W, Sánchez R, Schmidt-Kaler F, Tiedemann D, Yan Z C, Yordanov D T and Zimmermann C 2010 J. Phys. G:Nucl. Part. Phys.37 055107
Analysis of the Zeeman effect on Dα spectra on the EAST tokamak Wei Gao(高伟), Juan Huang(黄娟), Chengrui Wu(吴承瑞), Zong Xu(许棕), Yumei Hou(侯玉梅), Zhao Jin(金钊), Yingjie Chen(陈颖杰), Pengfei Zhang(张鹏飞), Ling Zhang(张凌), Zhenwei Wu(吴振伟), EAST Team. Chin. Phys. B, 2017, 26(4): 045203.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.