|
|
Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback |
Zai-Fu Jiang(蒋再富)1,2, Zheng-Mao Wu(吴正茂)1,†, Wen-Yan Yang(杨文艳)3, Chun-Xia Hu(胡春霞)1,4, Yan-Hong Jin(靳艳红)1,4, Zhen-Zhen Xiao(肖珍珍)1, and Guang-Qiong Xia(夏光琼)1,‡ |
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China; 2 School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China; 3 School of Physics, Chongqing University of Science and Technology, Chongqing 401331, China; 4 College of Mobile Telecommunications, Chongqing University of Posts and Telecom, Chongqing 401520, China |
|
|
Abstract Based on three-level exciton model, the enhanced photonic microwave signal generation by using a sole excited-state (ES) emitting quantum dot (QD) laser under both optical injection and optical feedback is numerically studied. Within the range of period-one (P1) dynamics caused by the optical injection, the variations of microwave frequency and microwave intensity with the parameters of frequency detuning and injection strength are demonstrated. It is found that the microwave frequency can be continuously tuned by adjusting the injection parameters, and the microwave intensity can be enhanced by changing the injection strength. Moreover, considering that the generated microwave has a wide linewidth, an optical feedback loop is further employed to compress the linewidth, and the effect of feedback parameters on the linewidth is investigated. It is found that with the increase of feedback strength or delay time, the linewidth is evidently decreased due to the locking effect. However, for the relatively large feedback strength or delay time, the linewidth compression effect becomes worse due to the gradually destroyed P1 dynamics. Besides, through optimizing the feedback parameters, the linewidth can be reduced by up to more than one order of magnitude for different microwave frequencies.
|
Received: 13 October 2020
Revised: 03 December 2020
Accepted manuscript online: 11 December 2020
|
PACS:
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
68.65.Hb
|
(Quantum dots (patterned in quantum wells))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775184 and 61875167). |
Corresponding Authors:
Zheng-Mao Wu, Guang-Qiong Xia
E-mail: zmwu@swu.edu.cn;gqxia@swu.edu.cn
|
Cite this article:
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼) Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback 2021 Chin. Phys. B 30 050504
|
[1] Zhong D Z, Luo W and Xu G L 2016 Chin. Phys. B 25 094202 [2] Zhang M J, Niu Y N, Zhao T, Zhang J Z, Liu Y, Xu Y H, Meng J, Wang Y C and Wang A B 2018 Chin. Phys. B 27 050502 [3] Yan S L 2016 Chin. Phys. B 25 090504 [4] Zhang L, Pan B, Chen G, Guo L, Lu D, Zhao L and Wang W 2017 Sci. Rep. 7 45900 [5] Wieczorek S, Simpson T B, Krauskopf B and Lenstra D 2003 Opt. Commun. 215 125 [6] Guo P, Yang W, Parekh D, Chang-Hasnain C J, Xu A S and Chen Z 2013 Opt. Express 21 3125 [7] Hong Y, Spencer P S, Rees P and Alan Shore K 2002 IEEE J. Quantum Electron. 38 274 [8] Qi X Q and Liu J M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1198 [9] Chan S C, Hwang S K and Liu J M 2006 Opt. Lett. 31 2254 [10] Capmany J and Novak D 2007 Nat. Photon. 1 319 [11] Zhuang J P and Chan S C 2015 Opt. Express 23 2777 [12] Xue C P, Ji S K, Hong Y H, Jiang N, Li H Q and Qiu K 2019 Opt. Express 27 5065 [13] Lo K H, Hwang S K and Donati S 2017 Opt. Express 25 31595 [14] Zhuang J P and Chan S C 2013 Opt. Lett. 38 344 [15] Simpson T B, Liu J M, AlMulla M, Usechak N G and Kovanis V 2013 IEEE J. Sel. Top. Quantum Electron. 19 1500807 [16] Ji S K, Xue C P, Valle A, Spencer P S, Li H Q and Hong Y H 2018 J. Lightwave Technol. 36 4347 [17] Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F and Seeds A 2011 Nat. Photon. 5 416 [18] Lin H, Hong Y H, Ourari S, Huang T Y and Yang C 2020 IEEE J. Quantum Electron. 56 2000308 [19] Li Q Z, Wang X, Zhang Z Y, Chen H M, Huang Y Q, Hou C C, Wang J, Zhang R Y, Ning J Q, Min J H and Zheng C C 2018 ACS Photon. 5 1084 [20] Sichkovskyi V I, Waniczek M and Reithmaier J P 2013 Appl. Phys. Lett. 102 221117 [21] Kelleher B, Tykalewicz B, Goulding D, Fedorov N, Dubinkin I, Erneux T and Viktorov E A 2017 Sci. Rep. 7 8414 [22] Meinecke S, Lingnau B, Röhm A and Lüdge K 2017 Ann. Phys. (Berlin) 529 1600279 [23] Capua A, Rozenfeld L, Mikhelashvili V, Eisenstein G, Kuntz M, Laemmlin M and Bimberg D 2007 Opt. Express 15 5388 [24] Liu A Y, Komljenovic T, Davenport M L, Gossard A C and Bowers J E 2017 Opt. Express 25 9535 [25] Shchekin O B and Deppe D G 2002 Appl. Phys. Lett. 80 3277 [26] Sellin R L, Ribbat C, Grundmann M, Ledentsov N N and Bimberg D 2001 Appl. Phys. Lett. 78 1207 [27] Hurtado A, Mee J, Nami M, Henning I D, Adams M J and Lester L F 2013 Opt. Express 21 10772 [28] Chen C Y, Cheng C H and Lin F Y 2016 Opt. Express 24 30537 [29] Hurtado A, Raghunathan R, Henning I D, Adams M J and Lester L F 2015 IEEE J. Sel. Top. Quantum Electron. 21 1801207 [30] Wang C, Raghunathan R, Schires K, Chan S C, Lester L F and Grillot F 2016 Opt. Lett. 41 1153 [31] Jiang Z F, Wu Z M, Yang W Y, Hu C X, Lin X D, Jin Y H, Dai M, Cui B, Yue D Z and Xia G Q 2020 Appl. Opt. 59 2935 [32] Arsenijević D, Schliwa A, Schmeckebier H, Stubenrauch M, Spiegelberg M, Bimberg D, Mikhelashvili V and Eisenstein G 2014 Appl. Phys. Lett. 104 181101 [33] Stevens B J, Childs D T D, Shahid H and Hogg R A 2009 Appl. Phys. Lett. 95 061101 [34] Huang H, Lin L C, Chen C Y, Arsenijević D, Bimberg D, Lin F Y and Grillot F 2018 Opt. Express 26 1743 [35] Wang C, Lingnau B, Lüdge K, Even J and Grillot F 2014 IEEE J. Quantum Electron. 50 723 [36] Jiang Z F, Wu Z M, Jayaprasat E, Yang W Y, Hu C X and Xia G Q 2019 Photonics 6 58 [37] Wang C, Zhuang J P, Grillot F and Chan S C 2016 Opt. Express 24 29872 [38] Grillot F, Wang C, Naderi N A and Even J 2013 IEEE J. Quantum Electron. 19 1900812 [39] Xue C P, Ji S K, Wang A B, Jiang N, Qiu K and Hong Y H 2018 Opt. Lett. 43 4184 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|