Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050504    DOI: 10.1088/1674-1056/abd2a8
GENERAL Prev   Next  

Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback

Zai-Fu Jiang(蒋再富)1,2, Zheng-Mao Wu(吴正茂)1,†, Wen-Yan Yang(杨文艳)3, Chun-Xia Hu(胡春霞)1,4, Yan-Hong Jin(靳艳红)1,4, Zhen-Zhen Xiao(肖珍珍)1, and Guang-Qiong Xia(夏光琼)1,‡
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
2 School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China;
3 School of Physics, Chongqing University of Science and Technology, Chongqing 401331, China;
4 College of Mobile Telecommunications, Chongqing University of Posts and Telecom, Chongqing 401520, China
Abstract  Based on three-level exciton model, the enhanced photonic microwave signal generation by using a sole excited-state (ES) emitting quantum dot (QD) laser under both optical injection and optical feedback is numerically studied. Within the range of period-one (P1) dynamics caused by the optical injection, the variations of microwave frequency and microwave intensity with the parameters of frequency detuning and injection strength are demonstrated. It is found that the microwave frequency can be continuously tuned by adjusting the injection parameters, and the microwave intensity can be enhanced by changing the injection strength. Moreover, considering that the generated microwave has a wide linewidth, an optical feedback loop is further employed to compress the linewidth, and the effect of feedback parameters on the linewidth is investigated. It is found that with the increase of feedback strength or delay time, the linewidth is evidently decreased due to the locking effect. However, for the relatively large feedback strength or delay time, the linewidth compression effect becomes worse due to the gradually destroyed P1 dynamics. Besides, through optimizing the feedback parameters, the linewidth can be reduced by up to more than one order of magnitude for different microwave frequencies.
Keywords:  photonic microwave      quantum dot laser      optical injection      optical feedback  
Received:  13 October 2020      Revised:  03 December 2020      Accepted manuscript online:  11 December 2020
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775184 and 61875167).
Corresponding Authors:  Zheng-Mao Wu, Guang-Qiong Xia     E-mail:  zmwu@swu.edu.cn;gqxia@swu.edu.cn

Cite this article: 

Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼) Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback 2021 Chin. Phys. B 30 050504

[1] Zhong D Z, Luo W and Xu G L 2016 Chin. Phys. B 25 094202
[2] Zhang M J, Niu Y N, Zhao T, Zhang J Z, Liu Y, Xu Y H, Meng J, Wang Y C and Wang A B 2018 Chin. Phys. B 27 050502
[3] Yan S L 2016 Chin. Phys. B 25 090504
[4] Zhang L, Pan B, Chen G, Guo L, Lu D, Zhao L and Wang W 2017 Sci. Rep. 7 45900
[5] Wieczorek S, Simpson T B, Krauskopf B and Lenstra D 2003 Opt. Commun. 215 125
[6] Guo P, Yang W, Parekh D, Chang-Hasnain C J, Xu A S and Chen Z 2013 Opt. Express 21 3125
[7] Hong Y, Spencer P S, Rees P and Alan Shore K 2002 IEEE J. Quantum Electron. 38 274
[8] Qi X Q and Liu J M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1198
[9] Chan S C, Hwang S K and Liu J M 2006 Opt. Lett. 31 2254
[10] Capmany J and Novak D 2007 Nat. Photon. 1 319
[11] Zhuang J P and Chan S C 2015 Opt. Express 23 2777
[12] Xue C P, Ji S K, Hong Y H, Jiang N, Li H Q and Qiu K 2019 Opt. Express 27 5065
[13] Lo K H, Hwang S K and Donati S 2017 Opt. Express 25 31595
[14] Zhuang J P and Chan S C 2013 Opt. Lett. 38 344
[15] Simpson T B, Liu J M, AlMulla M, Usechak N G and Kovanis V 2013 IEEE J. Sel. Top. Quantum Electron. 19 1500807
[16] Ji S K, Xue C P, Valle A, Spencer P S, Li H Q and Hong Y H 2018 J. Lightwave Technol. 36 4347
[17] Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F and Seeds A 2011 Nat. Photon. 5 416
[18] Lin H, Hong Y H, Ourari S, Huang T Y and Yang C 2020 IEEE J. Quantum Electron. 56 2000308
[19] Li Q Z, Wang X, Zhang Z Y, Chen H M, Huang Y Q, Hou C C, Wang J, Zhang R Y, Ning J Q, Min J H and Zheng C C 2018 ACS Photon. 5 1084
[20] Sichkovskyi V I, Waniczek M and Reithmaier J P 2013 Appl. Phys. Lett. 102 221117
[21] Kelleher B, Tykalewicz B, Goulding D, Fedorov N, Dubinkin I, Erneux T and Viktorov E A 2017 Sci. Rep. 7 8414
[22] Meinecke S, Lingnau B, Röhm A and Lüdge K 2017 Ann. Phys. (Berlin) 529 1600279
[23] Capua A, Rozenfeld L, Mikhelashvili V, Eisenstein G, Kuntz M, Laemmlin M and Bimberg D 2007 Opt. Express 15 5388
[24] Liu A Y, Komljenovic T, Davenport M L, Gossard A C and Bowers J E 2017 Opt. Express 25 9535
[25] Shchekin O B and Deppe D G 2002 Appl. Phys. Lett. 80 3277
[26] Sellin R L, Ribbat C, Grundmann M, Ledentsov N N and Bimberg D 2001 Appl. Phys. Lett. 78 1207
[27] Hurtado A, Mee J, Nami M, Henning I D, Adams M J and Lester L F 2013 Opt. Express 21 10772
[28] Chen C Y, Cheng C H and Lin F Y 2016 Opt. Express 24 30537
[29] Hurtado A, Raghunathan R, Henning I D, Adams M J and Lester L F 2015 IEEE J. Sel. Top. Quantum Electron. 21 1801207
[30] Wang C, Raghunathan R, Schires K, Chan S C, Lester L F and Grillot F 2016 Opt. Lett. 41 1153
[31] Jiang Z F, Wu Z M, Yang W Y, Hu C X, Lin X D, Jin Y H, Dai M, Cui B, Yue D Z and Xia G Q 2020 Appl. Opt. 59 2935
[32] Arsenijević D, Schliwa A, Schmeckebier H, Stubenrauch M, Spiegelberg M, Bimberg D, Mikhelashvili V and Eisenstein G 2014 Appl. Phys. Lett. 104 181101
[33] Stevens B J, Childs D T D, Shahid H and Hogg R A 2009 Appl. Phys. Lett. 95 061101
[34] Huang H, Lin L C, Chen C Y, Arsenijević D, Bimberg D, Lin F Y and Grillot F 2018 Opt. Express 26 1743
[35] Wang C, Lingnau B, Lüdge K, Even J and Grillot F 2014 IEEE J. Quantum Electron. 50 723
[36] Jiang Z F, Wu Z M, Jayaprasat E, Yang W Y, Hu C X and Xia G Q 2019 Photonics 6 58
[37] Wang C, Zhuang J P, Grillot F and Chan S C 2016 Opt. Express 24 29872
[38] Grillot F, Wang C, Naderi N A and Even J 2013 IEEE J. Quantum Electron. 19 1900812
[39] Xue C P, Ji S K, Wang A B, Jiang N, Qiu K and Hong Y H 2018 Opt. Lett. 43 4184
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[3] Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: Proposal and numerical analysis
Shi-Rong Xu(许世蓉), Xin-Hong Jia (贾新鸿), Hui-Liang Ma(马辉亮), Jia-Bing Lin(林佳兵), Wen-Yan Liang(梁文燕), and Yu-Lian Yang(杨玉莲). Chin. Phys. B, 2021, 30(1): 014203.
[4] Dynamic characteristics in an external-cavity multi-quantum-well laser
Sen-Lin Yan(颜森林). Chin. Phys. B, 2018, 27(6): 060501.
[5] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[6] Photonic generation of RF and microwave signal with relative frequency instability of 10-15
Lu-Lu Yan(闫露露), Wen-Yu Zhao(赵文宇), Yan-Yan Zhang(张颜艳), Zhao-Yang Tai(邰朝阳), Pan Zhang(张攀), Bing-Jie Rao(饶冰洁), Kai Ning(宁凯), Xiao-Fei Zhang(张晓斐), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2018, 27(3): 030601.
[7] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼). Chin. Phys. B, 2015, 24(5): 054207.
[8] Power-induced polarization switching and bistability characteristics in 1550-nm VCSELs subjected to orthogonal optical injection
Chen Jian-Jun (陈建军), Xia Guang-Qiong (夏光琼), Wu Zheng-Mao (吴正茂). Chin. Phys. B, 2015, 24(2): 024210.
[9] Analysis of gain distribution in cladding-pumped thulium-doped fiber laser and optical feedback inhibition problem in fiber-bulk laser system
Ji En-Cai (吉恩才), Liu Qiang (柳强), Hu Zhen-Yue (胡震岳), Gong Ma-Li (巩马理). Chin. Phys. B, 2015, 24(10): 104210.
[10] Distortion of optical feedback signals in microchip Nd:YAG lasers subjected to external multi-beam interference feedback
Tan Yi-Dong(谈宜东), Zhang Shu-Lian(张书练), Ren Zhou(任舟), Ren Cheng (任成), and Zhang Yi-Nan(张亦男). Chin. Phys. B, 2010, 19(3): 034203.
[11] Polarization switching in a quasi-isotropic microchip Nd:YAG laser induced by optical feedback
Ren Cheng(任成), Tan Yi-Dong(谈宜东), and Zhang Shu-Lian(张书练). Chin. Phys. B, 2010, 19(2): 024206.
[12] Anisotropic optical feedback of single frequency intra-cavity He--Ne laser
Zhou Lu-Fei(周鲁飞), Zhang Bin(张斌), Zhang Shu-Lian(张书练), Tan Yi-Dong(谈宜东), and Liu Wei-Xin(刘维新). Chin. Phys. B, 2009, 18(3): 1141-1146.
[13] Intensity modulation characters of orthogonally polarized HeNe lasers with different optical feedback level
Cui Liu(崔柳), Zhang Shu-Lian(张书练), and Wan Xin-Jun(万新军) . Chin. Phys. B, 2008, 17(2): 644-648.
[14] Intensity modulation in single-mode microchip Nd:YAG lasers with asymmetric external cavity
Tan Yi-Dong(谈宜东), Zhang Shu-Lian(张书练), Liu Wei-Xin(刘维新), and MaoWei(毛威). Chin. Phys. B, 2007, 16(4): 1020-1026.
[15] Chaos synchronization in injection-locked semiconductor lasers with optical feedback
Liu Yu-Jin(刘玉金), Zhang Sheng-Hai(张胜海), and Qian Xing-Zhong(钱兴中). Chin. Phys. B, 2007, 16(2): 463-467.
No Suggested Reading articles found!