Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(3): 1141-1146    DOI: 10.1088/1674-1056/18/3/050
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Anisotropic optical feedback of single frequency intra-cavity He--Ne laser

Zhou Lu-Fei(周鲁飞)a), Zhang Bin(张斌)b), Zhang Shu-Lian(张书练)a), Tan Yi-Dong(谈宜东)a), and Liu Wei-Xin(刘维新)a)
a The State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, China; b Department of Optics Science and Technology, National University of Defense Technology, Hunan 410073, China
Abstract  This paper presents the anisotropic optical feedback of a single frequency intra-cavity He--Ne laser. A novel phenomenon was discovered that the laser output an elliptical polarized frequency instead of the initial linear polarized one. Two intensities with a phase difference were detected, both of which were modulated in the form of cosine wave and a fringe shift corresponds to a $\lambda$/2 movement of the feedback mirror. The phase difference can be continuously modulated by the wave plate in the external cavity. Frequency stabilization was used to stabilize the laser frequency so as to enlarge the measuring range and improve the measurement precision. This anisotropic optical feedback system offers a potential displacement measurement technology with the function of subdivision of $\lambda$/2 and in-time direction judgment. The three-mirror Fabry--Perot cavity model is used to present the experimental results. Given the lack of need of lasing adjustment, this full intra-cavity laser can significantly improve the simplicity and stability of the optical feedback system.
Keywords:  optical feedback      single frequency      mode competition      displacement measurement  
Received:  27 June 2008      Revised:  16 August 2008      Accepted manuscript online: 
PACS:  42.55.Lt (Gas lasers including excimer and metal-vapor lasers)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60437010).

Cite this article: 

Zhou Lu-Fei(周鲁飞), Zhang Bin(张斌), Zhang Shu-Lian(张书练), Tan Yi-Dong(谈宜东), and Liu Wei-Xin(刘维新) Anisotropic optical feedback of single frequency intra-cavity He--Ne laser 2009 Chin. Phys. B 18 1141

[1] A 37 mJ, 100 Hz, high energy single frequency oscillator
Yu Shen(申玉), Yong Bo(薄勇), Nan Zong(宗楠), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), and Zuyan Xu(许祖彦). Chin. Phys. B, 2021, 30(8): 084208.
[2] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
[3] Sensitivity to external optical feedback of circular-side hexagonal resonator microcavity laser
Tong Zhao(赵彤), Zhi-Ru Shen(申志儒), Wen-Li Xie(谢文丽), Yan-Qiang Guo(郭龑强), An-Bang Wang(王安帮), and Yun-Cai Wang(王云才). Chin. Phys. B, 2021, 30(12): 120513.
[4] Dynamic characteristics in an external-cavity multi-quantum-well laser
Sen-Lin Yan(颜森林). Chin. Phys. B, 2018, 27(6): 060501.
[5] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[6] Compensation of body shake errors in terahertz beam scanning single frequency holography for standoff personnel screening
Wei Liu(刘玮), Chao Li(李超), Zhao-Yang Sun(孙兆阳), Yu Zhao(赵宇), Shi-You Wu(吴世有), Guang-You Fang(方广有). Chin. Phys. B, 2016, 25(8): 088402.
[7] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼). Chin. Phys. B, 2015, 24(5): 054207.
[8] A novel method of evaluating large mode area fiber design by brightness factor
Zhang Hai-Tao (张海涛), Chen Dan (陈丹), Ren Hai-Cui (任海翠), Yan Ping (闫平), Gong Ma-Li (巩马理). Chin. Phys. B, 2015, 24(2): 024207.
[9] Analysis of gain distribution in cladding-pumped thulium-doped fiber laser and optical feedback inhibition problem in fiber-bulk laser system
Ji En-Cai (吉恩才), Liu Qiang (柳强), Hu Zhen-Yue (胡震岳), Gong Ma-Li (巩马理). Chin. Phys. B, 2015, 24(10): 104210.
[10] Influence of mode competition on beam quality of fiber amplifier
Xiao Qi-Rong (肖起榕), Yan Ping (闫平), Sun Jun-Yi (孙骏逸), Chen Xiao (陈霄), Ren Hai-Cui (任海翠), Gong Ma-Li (巩马理). Chin. Phys. B, 2014, 23(10): 104221.
[11] A 168-W high-power single-frequency amplifier in an all-fiber configuration
Xiao Hu(肖虎), Dong Xiao-Lin(董小林), Zhou Pu(周朴), Xu Xiao-Jun(许晓军), and Zhao Guo-Min(赵国民) . Chin. Phys. B, 2012, 21(3): 034207.
[12] Distortion of optical feedback signals in microchip Nd:YAG lasers subjected to external multi-beam interference feedback
Tan Yi-Dong(谈宜东), Zhang Shu-Lian(张书练), Ren Zhou(任舟), Ren Cheng (任成), and Zhang Yi-Nan(张亦男). Chin. Phys. B, 2010, 19(3): 034203.
[13] Polarization switching in a quasi-isotropic microchip Nd:YAG laser induced by optical feedback
Ren Cheng(任成), Tan Yi-Dong(谈宜东), and Zhang Shu-Lian(张书练). Chin. Phys. B, 2010, 19(2): 024206.
[14] Effect of mode-mode competition on atom-atom entanglement
Wu Qin(吴琴), Fang Mao-Fa(方卯发), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2010, 19(2): 024209.
[15] The entanglement between two isolated atoms in double mode--mode competition model
Wu Qin(吴琴), Fang Mao-Fa(方卯发), Cai Jian-Wu(蔡建武), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2009, 18(12): 5336-5341.
No Suggested Reading articles found!