Abstract As an alternative device for neuromorphic computing to conquer von Neumann bottleneck, the memristor serving as an artificial synapse has attracted much attention. The TaOx memristors embedded with silver nanoparticles (Ag NPs) have been fabricated to implement synaptic plasticity and to investigate the effects of Ag NPs. The TaOx memristors with and without Ag NPs are capable of simulating synaptic plasticity (PTP, STDP, and STP to LTP), learning, and memory behaviors. The conduction of the high resistance state (HRS) is driven by Schottky-emission mechanism. The embedment of Ag NPs causes the low resistance state (LRS) conduction governed by a Poole-Frenkel emission mechanism instead of a space-charge-limited conduction (SCLC) in a pure TaOx system, which is ascribed to the Ag NPs enhancing electric field to produce additional traps and to reduce Coulomb potential energy of bound electrons to assist electron transport. Consequently, the enhanced electric fields induced by Ag NPs increase the learning strength and learning speed of the synapses. Additionally, they also improve synaptic sensitivity to stimuli. The linearity of conductance modulation and the reproducibility of conductance are improved as well.
(Synapses: chemical and electrical (gap junctions))
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61674038), the Natural Science Foundation of Fujian Province, China (Grant No. 2019J01218), the Fund from the Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZR145), and the Science Fund from the Fujian Provincial Department of Industry and Information Technology of China (Grant No. 82318075).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.