Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047503    DOI: 10.1088/1674-1056/abc2b5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR

Kai-Yue Zeng(曾凯悦)1,2, Long Ma(马龙)1,†, Long-Meng Xu(徐龙猛)3, Zhao-Ming Tian(田召明)3,‡, Lang-Sheng Ling(凌浪生)1, and Li Pi(皮雳)1,2,§
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 2 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 3 School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  We report our nuclear magnetic resonance (NMR) study on the structurally spin chain compound Ni2NbBO6 with complex magnetic coupling. The antiferromagnetic transition is monitored by the line splitting resulting from the staggered internal hyperfine field. The magnetic coupling configuration proposed by the first-principle density functional theory (DFT) is supported by NMR spectral analysis. For the spin dynamics, a prominent peak at T∼35 K well above the Néel temperature (T N∼20 K at μ0H=10 T) is observed from the spin-lattice relaxation data. As compared with the dc-susceptibility, this behavior indicates an antiferromagnetic coupling with the typical energy scale of ∼3 meV. Thus, the Ni2NbBO6 compound can be viewed as strongly ferromagnetically coupled armchair spin chains along the crystalline b-axis. These facts place strong constraints on the theoretical model for this compound.
Keywords:  low-dimensional quantum magnetism      magnetic coupling      spin excitations      nuclear magnetic resonance  
Received:  15 September 2020      Revised:  15 October 2020      Accepted manuscript online:  20 October 2020
PACS:  75.30.-m (Intrinsic properties of magnetically ordered materials)  
  75.40.Gb (Dynamic properties?)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401802), the National Natural Science Foundation of China (Grant Nos. 11874057, 11504377, 11574288, 11874158, U1732273, and 21927814), and the Users with Excellence Program of Hefei Science Center CAS (Grant No. 2019HSC-UE008). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province.
Corresponding Authors:  Corresponding author. E-mail: malong@hmfl.ac.cn Corresponding author. E-mail: tianzhaoming@hust.edu.cn §Corresponding author. E-mail: pili@ustc.edu.cn   

Cite this article: 

Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳) Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR 2021 Chin. Phys. B 30 047503

1 Zapf V, Jaime M and Batista C D 2014 Rev. Mod. Phys. 86 563
2 Han T, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
3 Punk M, Chowdhury D and Sachdev S 2014 Nat. Phys. 10 289
4 Dalla Piazza B, Mourigal M, Christensen N B, Nilsen G J, Tregenna-Piggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A and R\phinnow H M 2015 Nat. Phys. 11 62
5 Bethe H 1931 Z. Phys. 71 205
6 Faddeev L D and Takhtajan L A 1981 Phys. Lett. A 85 375
7 Haldane F D M 1983 Phys. Lett. A 93 464
8 Haldane F D M 1983 Phys. Rev. Lett. 50 1153
9 Ma S, Broholm C, Reich D H, Sternlieb B J and Erwin R W 1992 Phys. Rev. Lett. 69 3571
10 Zaliznyak I A, Lee S H and Petrov S V 2001 Phys. Rev. Lett. 87 017202
11 Bera A K, Lake B, Islam A T M N, Janson O, Rosner H, Schneidewind A, Park J T, Wheeler E and Zander S 2015 Phys. Rev. B 91 144414
12 Takigawa M, Asano T, Ajiro Y and Mekata M 1995 Phys. Rev. B 52 R13087
13 Takigawa M, Asano T, Ajiro Y, Mekata M and Uemura Y J 1996 Phys. Rev. Lett. 76 2173
14 Pahari B, Ghoshray K, Sarkar R, Bandyopadhyay B and Ghoshray A 2006 Phys. Rev. B 73 012407
15 Mutka H, Payen C, Molinie P, Soubeyroux J L, Colombet P and Taylor A D 1991 Phys. Rev. Lett. 67 497
16 Honda Z, Katsumata K, Nishiyama Y and Harada I 2001 Phys. Rev. B 63 064420
17 Uchiyama Y, Sasago Y, Tsukada I, Uchinokura K, Zheludev A, Hayashi T, Miura N and Boni P 1999 Phys. Rev. Lett. 83 632
18 Darriet J and Regnault L 1993 Solid State Commun. 86 409
19 Wierschem K and Sengupta P 2014 Phys. Rev. Lett. 112 247203
20 Wierschem K, Kato Y, Nishida Y, Batista C D and Sengupta P 2012 Phys. Rev. B 86 201108(R)
21 Rüegg Ch, Furrer A, Sheptyakov D, Strassle Th, Kramer K W, Gudel H U and Melesi L 2004 Phys. Rev. Lett. 93 257201
22 Sengupta P and Batista C D 2007 Phys. Rev. Lett. 99 217205
23 Sengupta P and Batista C D 2007 Phys. Rev. Lett. 98 227201
24 Ansell G B, Leonowicz M E, Modrick M A, Wanklyn B M and Wondre F R 1982 Acta Crystalogr. Sect. B 38 892
25 Rao G N, Singh V N, Sankar R, Muthuselvam I P, Guo G Y and Chou F C 2015 Phys. Rev. B 91 014423
26 Goodenough J B1963 Magnetism and the Chemical Bond (New York: Interscience )
27 Streltsov S V and Khomskii D I 2017 Phys. Usp. 60 1121
28 Prosnikov M A, Smirnov A N, Davydov V Yu, Pisarev R V, Lyubochko N A and Barilo S N 2018 Phys. Rev. B 98 104404
29 Law J M, Benner H and Kremer R K 2013 J. Phys.: Condens. Matter 25 065601
30 Slichter C P1990 Principles of Magnetic Resonance(Berlin: Springer)
31 Abragam A1961 The Principles of Nuclear Magnetism (Oxford: Oxford University Press)
32 Vachon M A, Koutroulakis G, Mitrovic V F, Reyes A P, Kuhns P, Coldea R and Tylczynski Z 2008 J. Phys.: Condens. Matter 20 295225
33 Casola F, Shiroka T, Glazkov V, Feiguin A, Dhalenne G, Revcolevschi A, Zheludev A, Ott H R and Mesot J 2012 Phys. Rev. B 86 165111
34 Nath R, Furukawa Y, Borsa F, Kaul E E, Baenitz M, Geibel C and Johnston D C 2009 Phys. Rev. B 80 214430
35 Pelissetto A and Vicari E 2002 Phys. Rep. 368 549
36 Kitagawa K, Katayama N, Ohgushi K, Yoshida M and Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709
37 Mcdowell A F 1995 J. Mag. Res. 113 242
38 Beeman D and Pincus P 1968 Phys. Rev. 166 359
39 Geertsma W and Khomskii D 1996 Phys. Rev. B 54 3011
40 Zheludev A, Kenzelmann M, Raymond S, Ressouche E, Masuda T, Kakurai K, Maslov S, Tsukada I, Uchinokura K and Wildes A 2000 Phys. Rev. Lett. 85 4799
41 Zheludev A, Kakurai K, Masuda T, Uchinokura K and Nakajima K 2002 Phys. Rev. Lett. 89 197205
42 Ma Long, Wang Z, Hu L, Qu Z, Hao N and Pi Li 2019 Phys. Rev. B 100 125126
[1] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[2] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[3] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[4] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[5] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[6] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[7] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[8] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[9] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[10] Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2
Huan-Cheng Yang(杨焕成), Kai Liu(刘 凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2018, 27(6): 067103.
[11] NMR evidence of charge fluctuations in multiferroic CuBr2
Rui-Qi Wang(王瑞琦), Jia-Cheng Zheng(郑家成), Tao Chen(陈涛), Peng-Shuai Wang(王朋帅), Jin-Shan Zhang(张金珊), Yi Cui(崔祎), Chong Wang(王冲), Yuan Li(李源), Sheng Xu(徐胜), Feng Yuan(袁峰), Wei-Qiang Yu(于伟强). Chin. Phys. B, 2018, 27(3): 037502.
[12] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[13] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[14] Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials
Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学). Chin. Phys. B, 2017, 26(4): 047301.
[15] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
No Suggested Reading articles found!