CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR |
Kai-Yue Zeng(曾凯悦)1,2, Long Ma(马龙)1,†, Long-Meng Xu(徐龙猛)3, Zhao-Ming Tian(田召明)3,‡, Lang-Sheng Ling(凌浪生)1, and Li Pi(皮雳)1,2,§ |
1 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 2 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 3 School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract We report our nuclear magnetic resonance (NMR) study on the structurally spin chain compound Ni2NbBO6 with complex magnetic coupling. The antiferromagnetic transition is monitored by the line splitting resulting from the staggered internal hyperfine field. The magnetic coupling configuration proposed by the first-principle density functional theory (DFT) is supported by NMR spectral analysis. For the spin dynamics, a prominent peak at T∼35 K well above the Néel temperature (T N∼20 K at μ0H=10 T) is observed from the spin-lattice relaxation data. As compared with the dc-susceptibility, this behavior indicates an antiferromagnetic coupling with the typical energy scale of ∼3 meV. Thus, the Ni2NbBO6 compound can be viewed as strongly ferromagnetically coupled armchair spin chains along the crystalline b-axis. These facts place strong constraints on the theoretical model for this compound.
|
Received: 15 September 2020
Revised: 15 October 2020
Accepted manuscript online: 20 October 2020
|
PACS:
|
75.30.-m
|
(Intrinsic properties of magnetically ordered materials)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
76.60.-k
|
(Nuclear magnetic resonance and relaxation)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401802), the National Natural Science Foundation of China (Grant Nos. 11874057, 11504377, 11574288, 11874158, U1732273, and 21927814), and the Users with Excellence Program of Hefei Science Center CAS (Grant No. 2019HSC-UE008). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province. |
Corresponding Authors:
†Corresponding author. E-mail: malong@hmfl.ac.cn ‡Corresponding author. E-mail: tianzhaoming@hust.edu.cn §Corresponding author. E-mail: pili@ustc.edu.cn
|
Cite this article:
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳) Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR 2021 Chin. Phys. B 30 047503
|
1 Zapf V, Jaime M and Batista C D 2014 Rev. Mod. Phys. 86 563 2 Han T, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 3 Punk M, Chowdhury D and Sachdev S 2014 Nat. Phys. 10 289 4 Dalla Piazza B, Mourigal M, Christensen N B, Nilsen G J, Tregenna-Piggott P, Perring T G, Enderle M, McMorrow D F, Ivanov D A and R\phinnow H M 2015 Nat. Phys. 11 62 5 Bethe H 1931 Z. Phys. 71 205 6 Faddeev L D and Takhtajan L A 1981 Phys. Lett. A 85 375 7 Haldane F D M 1983 Phys. Lett. A 93 464 8 Haldane F D M 1983 Phys. Rev. Lett. 50 1153 9 Ma S, Broholm C, Reich D H, Sternlieb B J and Erwin R W 1992 Phys. Rev. Lett. 69 3571 10 Zaliznyak I A, Lee S H and Petrov S V 2001 Phys. Rev. Lett. 87 017202 11 Bera A K, Lake B, Islam A T M N, Janson O, Rosner H, Schneidewind A, Park J T, Wheeler E and Zander S 2015 Phys. Rev. B 91 144414 12 Takigawa M, Asano T, Ajiro Y and Mekata M 1995 Phys. Rev. B 52 R13087 13 Takigawa M, Asano T, Ajiro Y, Mekata M and Uemura Y J 1996 Phys. Rev. Lett. 76 2173 14 Pahari B, Ghoshray K, Sarkar R, Bandyopadhyay B and Ghoshray A 2006 Phys. Rev. B 73 012407 15 Mutka H, Payen C, Molinie P, Soubeyroux J L, Colombet P and Taylor A D 1991 Phys. Rev. Lett. 67 497 16 Honda Z, Katsumata K, Nishiyama Y and Harada I 2001 Phys. Rev. B 63 064420 17 Uchiyama Y, Sasago Y, Tsukada I, Uchinokura K, Zheludev A, Hayashi T, Miura N and Boni P 1999 Phys. Rev. Lett. 83 632 18 Darriet J and Regnault L 1993 Solid State Commun. 86 409 19 Wierschem K and Sengupta P 2014 Phys. Rev. Lett. 112 247203 20 Wierschem K, Kato Y, Nishida Y, Batista C D and Sengupta P 2012 Phys. Rev. B 86 201108(R) 21 Rüegg Ch, Furrer A, Sheptyakov D, Strassle Th, Kramer K W, Gudel H U and Melesi L 2004 Phys. Rev. Lett. 93 257201 22 Sengupta P and Batista C D 2007 Phys. Rev. Lett. 99 217205 23 Sengupta P and Batista C D 2007 Phys. Rev. Lett. 98 227201 24 Ansell G B, Leonowicz M E, Modrick M A, Wanklyn B M and Wondre F R 1982 Acta Crystalogr. Sect. B 38 892 25 Rao G N, Singh V N, Sankar R, Muthuselvam I P, Guo G Y and Chou F C 2015 Phys. Rev. B 91 014423 26 Goodenough J B1963 Magnetism and the Chemical Bond (New York: Interscience ) 27 Streltsov S V and Khomskii D I 2017 Phys. Usp. 60 1121 28 Prosnikov M A, Smirnov A N, Davydov V Yu, Pisarev R V, Lyubochko N A and Barilo S N 2018 Phys. Rev. B 98 104404 29 Law J M, Benner H and Kremer R K 2013 J. Phys.: Condens. Matter 25 065601 30 Slichter C P1990 Principles of Magnetic Resonance(Berlin: Springer) 31 Abragam A1961 The Principles of Nuclear Magnetism (Oxford: Oxford University Press) 32 Vachon M A, Koutroulakis G, Mitrovic V F, Reyes A P, Kuhns P, Coldea R and Tylczynski Z 2008 J. Phys.: Condens. Matter 20 295225 33 Casola F, Shiroka T, Glazkov V, Feiguin A, Dhalenne G, Revcolevschi A, Zheludev A, Ott H R and Mesot J 2012 Phys. Rev. B 86 165111 34 Nath R, Furukawa Y, Borsa F, Kaul E E, Baenitz M, Geibel C and Johnston D C 2009 Phys. Rev. B 80 214430 35 Pelissetto A and Vicari E 2002 Phys. Rep. 368 549 36 Kitagawa K, Katayama N, Ohgushi K, Yoshida M and Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709 37 Mcdowell A F 1995 J. Mag. Res. 113 242 38 Beeman D and Pincus P 1968 Phys. Rev. 166 359 39 Geertsma W and Khomskii D 1996 Phys. Rev. B 54 3011 40 Zheludev A, Kenzelmann M, Raymond S, Ressouche E, Masuda T, Kakurai K, Maslov S, Tsukada I, Uchinokura K and Wildes A 2000 Phys. Rev. Lett. 85 4799 41 Zheludev A, Kakurai K, Masuda T, Uchinokura K and Nakajima K 2002 Phys. Rev. Lett. 89 197205 42 Ma Long, Wang Z, Hu L, Qu Z, Hao N and Pi Li 2019 Phys. Rev. B 100 125126 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|