Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047504    DOI: 10.1088/1674-1056/abdea2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction

Qiuyang Li(李求洋)1, Penghe Zhang(张蓬鹤)1, Haotian Li(李浩天)2,†, Lina Chen(陈丽娜)2,3, Kaiyuan Zhou(周恺元)2, Chunjie Yan(晏春杰)2, Liyuan Li(李丽媛)2, Yongbing Xu(徐永兵)4, Weixin Zhang(张卫欣)5, Bo Liu(刘波)6, Hao Meng(孟浩)6, Ronghua Liu(刘荣华)2,‡, and Youwei Du(都有为)2
1 China Electric Power Research Institute, Beijing 100192, China;
2 School of Physics, Nanjing University, Nanjing 210093, China;
3 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
4 School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China;
5 State Grid Tianjin Electric Power Company, Tianjin 300384, China;
6 Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Zhejiang 311300, China
Abstract  We investigate properties of perpendicular anisotropy magnetic tunnel junctions (pMTJs) with a stack structure MgO/CoFeB/Ta/CoFeB/MgO as the free layer (or recording layer), and obtain the necessary device parameters from the tunneling magnetoresistance (TMR) vs. field loops and current-driven magnetization switching experiments. Based on the experimental results and device parameters, we further estimate current-driven switching performance of pMTJ including switching time and power, and their dependence on perpendicular magnetic anisotropy and damping constant of the free layer by SPICE-based circuit simulations. Our results show that the pMTJ cells exhibit a less than 1 ns switching time and write energies < 1.4 pJ; meanwhile the lower perpendicular magnetic anisotropy (PMA) and damping constant can further reduce the switching time at the studied range of damping constant α < 0.1. Additionally, our results demonstrate that the pMTJs with the thermal stability factor $\simeq 73$ can be easily transformed into spin-torque nano-oscillators from magnetic memory as microwave sources or detectors for telecommunication devices.
Keywords:  magnetic tunnel junctions      magnetic tunnel junction (MTJ) model      switching time      spin torque nano-oscillator  
Received:  29 December 2020      Revised:  19 January 2021      Accepted manuscript online:  22 January 2021
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  75.75.-c (Magnetic properties of nanostructures)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by State Grid Corporation of China under the 2018 Science and Technology Project of State Grid Corporation: Research on electromagnetic measurement technology based on EIT and TMR (Grant No. JL71-18-007).
Corresponding Authors:  Corresponding author. E-mail: lht_phy@smail.nju.edu.cn Corresponding author. E-mail: rhliu@nju.edu.cn   

Cite this article: 

Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为) Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction 2021 Chin. Phys. B 30 047504

1 Djayaprawiraa D D, Tsunekawa K, Nagai M, Maehara H, Yamagata S, Watanabe N, Yuasab S, Suzukic Y and Ando K 2005 Appl. Phys. Lett. 86 092502
2 Ikeda S, Hayakawa J, Lee Y M, Matsukura F, Ohno Y, Hanyu T and Ohno H 2007 IEEE T. Electron Dev. 54 991
3 Fu Q W, Zhou K Y, Chen L N, Xu Y B, Zhou T J, Wang D H, Chi K Q, Meng H, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 117501
4 Makarov A, Windbacher T, Sverdlov V and Selberherr S 2016 Semicond Sci. Tech. 31 113006
5 Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
6 Berger L 1996 Phys. Rev. B 54 9353
7 Grollier J, Cros V, Hamzic A, George J M, Jaffres H, Fert A, Faini G, Ben Youssef J and Legall H 2001 Appl. Phys. Lett. 78 3663
8 Hayakawa J, Ikeda S, Miura K, Yarnanouchi M, Lee Y M, Sasaki R, Ichimura M, Ito K, Kawahara T, Takemura R, Meguro T, Matsukura F, Takahashi H, Matsuoka H and Ohno H 2008 IEEE T. Magn. 44 1962
9 Katine J A, Albert F J, Buhrman R A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 3149
10 Tsoi M, Jansen A G M, Bass J, Chiang W C, Tsoi V and Wyder P 2000 Nature 406 46
11 Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501
12 Zhang Y J, Wang X B, Li Y, Jones A K and Chen Y R2012 Des. Aut. Test. Europe. 1313
13 Zeng Z M, Amiri P K, Rowlands G, Zhao H, Krivorotov I N, Wang J P, Katine J A, Langer J, Galatsis K, Wang K L and Jiang H W 2011 Appl. Phys. Lett. 98 072512
14 Sato H, Enobio E C I, Yamanouchi M, Ikeda S, Fukami S, Kanai S, Matsukura F and Ohno H 2014 Appl. Phys. Lett. 105 062403
15 Lee S E, Takemura Y and Park J G 2016 Appl. Phys. Lett. 109 182405
16 Song J, Ahmed I, Zhao Z Y, Zhang D L, Sapatnekar S S, Wang J P and Kim C H 2018 IEEE J. Explor. Solid 4 76
17 Weisheit M, Fahler S, Marty A, Souche Y, Poinsignon C and Givord D 2007 Science 315 349
18 Endo M, Kanai S, Ikeda S, Matsukura F and Ohno H 2010 Appl. Phys. Lett. 96 212503
19 Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T and Uehara Y 2016 Aip Adv. 6 055816
20 Wei H X, Lu Q F, Zhao S F, Zhang X Q, Feng J F and Han X F 2004 Chin. Phys. 13 1553
21 Han G C, Tran M, Sim C H, Wang J C, Eason K, Ter Lim S and Huang A H 2015 J. Appl. Phys. 117 17B515
22 Zhang L K, Fang B, Cai J L and Zeng Z M 2018 Appl. Phys. Lett. 112 242408
23 Shi S J, Ou Y X, Aradhya S V, Ralph D C and Buhrman R A 2018 Phys. Rev. Appl. 9 011002
24 Zheng C X, Chen H H, Zhang X L, Zhang Z Z and Liu Y W 2019 Chin. Phys. B 28 037503
25 Chen T S, Dumas R K, Eklund A, Muduli P K, Houshang A, Awad A A, Durrenfeld P, Malm B G, Rusu A and Akerman J 2016 P IEEE 104 1919
26 Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102
27 Yang M S, Fang L and Chi Y Q 2018 Chin. Phys. B 27 098504
28 Yamada K, Oomaru K, Nakamura S, Sato T and Nakatani Y 2016 Appl. Phys. Lett. 108 042402
29 Lim H, Lee S and Shin H 2014 IEEE Electr Device L 35 193
30 Torunbalci M M, Upadhyaya P, Bhave S A and Camsari K Y 2018 IEEE T. Electron Dev. 65 4628
31 Wang G D, Zhang Y, Wang J K, Zhang Z Z, Zhang K, Zheng Z Y, Klein J O, Ravelosona D, Zhang Y G and Zhao W S 2019 IEEE T. Electron Dev. 66 2431
32 Zeng Z M, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y M, Langer J, Galatsis K, Wang K L and Jiang H W 2012 Acs Nano 6 6115
33 Liu R H, Chen L N, Urazhdin S and Du Y W 2017 Phys. Rev. Appl. 8 021001
34 Chen L N, Urazhdin S, Du Y W and Liu R H 2019 Phys. Rev. Appl. 11 064038
[1] Spin torque nano-oscillators with a perpendicular spin polarizer
Cuixiu Zheng(郑翠秀), Hao-Hsau Chen(陈浩轩), Xiangli Zhang(张祥丽), Zongzhi Zhang(张宗芝), Yaowen Liu(刘要稳). Chin. Phys. B, 2019, 28(3): 037503.
[2] Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer
Guo Hui-Qiang (郭会强), Tang Wei-Yue (唐伟跃), Liu Liang (刘亮), Wei Jian (危健), Li Da-Lai (李大来), Feng Jia-Feng (丰家峰), Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2015, 24(7): 078504.
[3] Polarization fatigue in poly(vinylidene fluoride (78%)-trifluoroethylene (22%)) ferroelectric thin films: a pulse train study
Luo Xiao-Ya(罗晓雅), Zhang Ji-Hao(张吉皓), Yan Xue-Jian(严学俭), and Zhu Guo-Dong(朱国栋). Chin. Phys. B, 2010, 19(10): 107702.
[4] Thermally activated magnetization reversal in magnetic tunnel junctions
Zhou Guang-Hong(周广宏), Wang Yin-Gang(王寅岗), Qi Xian-Jin(祁先进), Li Zi-Quan(李子全), and Chen Jian-Kang(陈建康). Chin. Phys. B, 2009, 18(2): 790-794.
[5] Bulk-like contribution to tunnel magnetoresistance in magnetic tunnel junctions
Zhu Tao (朱涛), Zhan Wen-Shan (詹文山), Shen Feng (沈峰), Zhang Ze (张泽), X. H. Xiang, G. Landry, John Q. Xiao. Chin. Phys. B, 2003, 12(6): 665-668.
No Suggested Reading articles found!