CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction |
Qiuyang Li(李求洋)1, Penghe Zhang(张蓬鹤)1, Haotian Li(李浩天)2,†, Lina Chen(陈丽娜)2,3, Kaiyuan Zhou(周恺元)2, Chunjie Yan(晏春杰)2, Liyuan Li(李丽媛)2, Yongbing Xu(徐永兵)4, Weixin Zhang(张卫欣)5, Bo Liu(刘波)6, Hao Meng(孟浩)6, Ronghua Liu(刘荣华)2,‡, and Youwei Du(都有为)2 |
1 China Electric Power Research Institute, Beijing 100192, China;
2 School of Physics, Nanjing University, Nanjing 210093, China;
3 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
4 School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China;
5 State Grid Tianjin Electric Power Company, Tianjin 300384, China;
6 Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Zhejiang 311300, China
|
|
|
Abstract We investigate properties of perpendicular anisotropy magnetic tunnel junctions (pMTJs) with a stack structure MgO/CoFeB/Ta/CoFeB/MgO as the free layer (or recording layer), and obtain the necessary device parameters from the tunneling magnetoresistance (TMR) vs. field loops and current-driven magnetization switching experiments. Based on the experimental results and device parameters, we further estimate current-driven switching performance of pMTJ including switching time and power, and their dependence on perpendicular magnetic anisotropy and damping constant of the free layer by SPICE-based circuit simulations. Our results show that the pMTJ cells exhibit a less than 1 ns switching time and write energies < 1.4 pJ; meanwhile the lower perpendicular magnetic anisotropy (PMA) and damping constant can further reduce the switching time at the studied range of damping constant α < 0.1. Additionally, our results demonstrate that the pMTJs with the thermal stability factor $\simeq 73$ can be easily transformed into spin-torque nano-oscillators from magnetic memory as microwave sources or detectors for telecommunication devices.
|
Received: 29 December 2020
Revised: 19 January 2021
Accepted manuscript online: 22 January 2021
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by State Grid Corporation of China under the 2018 Science and Technology Project of State Grid Corporation: Research on electromagnetic measurement technology based on EIT and TMR (Grant No. JL71-18-007). |
Corresponding Authors:
†Corresponding author. E-mail: lht_phy@smail.nju.edu.cn ‡Corresponding author. E-mail: rhliu@nju.edu.cn
|
Cite this article:
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为) Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction 2021 Chin. Phys. B 30 047504
|
1 Djayaprawiraa D D, Tsunekawa K, Nagai M, Maehara H, Yamagata S, Watanabe N, Yuasab S, Suzukic Y and Ando K 2005 Appl. Phys. Lett. 86 092502 2 Ikeda S, Hayakawa J, Lee Y M, Matsukura F, Ohno Y, Hanyu T and Ohno H 2007 IEEE T. Electron Dev. 54 991 3 Fu Q W, Zhou K Y, Chen L N, Xu Y B, Zhou T J, Wang D H, Chi K Q, Meng H, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 117501 4 Makarov A, Windbacher T, Sverdlov V and Selberherr S 2016 Semicond Sci. Tech. 31 113006 5 Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1 6 Berger L 1996 Phys. Rev. B 54 9353 7 Grollier J, Cros V, Hamzic A, George J M, Jaffres H, Fert A, Faini G, Ben Youssef J and Legall H 2001 Appl. Phys. Lett. 78 3663 8 Hayakawa J, Ikeda S, Miura K, Yarnanouchi M, Lee Y M, Sasaki R, Ichimura M, Ito K, Kawahara T, Takemura R, Meguro T, Matsukura F, Takahashi H, Matsuoka H and Ohno H 2008 IEEE T. Magn. 44 1962 9 Katine J A, Albert F J, Buhrman R A, Myers E B and Ralph D C 2000 Phys. Rev. Lett. 84 3149 10 Tsoi M, Jansen A G M, Bass J, Chiang W C, Tsoi V and Wyder P 2000 Nature 406 46 11 Liu H F, Ali S S and Han X F 2014 Chin. Phys. B 23 077501 12 Zhang Y J, Wang X B, Li Y, Jones A K and Chen Y R2012 Des. Aut. Test. Europe. 1313 13 Zeng Z M, Amiri P K, Rowlands G, Zhao H, Krivorotov I N, Wang J P, Katine J A, Langer J, Galatsis K, Wang K L and Jiang H W 2011 Appl. Phys. Lett. 98 072512 14 Sato H, Enobio E C I, Yamanouchi M, Ikeda S, Fukami S, Kanai S, Matsukura F and Ohno H 2014 Appl. Phys. Lett. 105 062403 15 Lee S E, Takemura Y and Park J G 2016 Appl. Phys. Lett. 109 182405 16 Song J, Ahmed I, Zhao Z Y, Zhang D L, Sapatnekar S S, Wang J P and Kim C H 2018 IEEE J. Explor. Solid 4 76 17 Weisheit M, Fahler S, Marty A, Souche Y, Poinsignon C and Givord D 2007 Science 315 349 18 Endo M, Kanai S, Ikeda S, Matsukura F and Ohno H 2010 Appl. Phys. Lett. 96 212503 19 Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T and Uehara Y 2016 Aip Adv. 6 055816 20 Wei H X, Lu Q F, Zhao S F, Zhang X Q, Feng J F and Han X F 2004 Chin. Phys. 13 1553 21 Han G C, Tran M, Sim C H, Wang J C, Eason K, Ter Lim S and Huang A H 2015 J. Appl. Phys. 117 17B515 22 Zhang L K, Fang B, Cai J L and Zeng Z M 2018 Appl. Phys. Lett. 112 242408 23 Shi S J, Ou Y X, Aradhya S V, Ralph D C and Buhrman R A 2018 Phys. Rev. Appl. 9 011002 24 Zheng C X, Chen H H, Zhang X L, Zhang Z Z and Liu Y W 2019 Chin. Phys. B 28 037503 25 Chen T S, Dumas R K, Eklund A, Muduli P K, Houshang A, Awad A A, Durrenfeld P, Malm B G, Rusu A and Akerman J 2016 P IEEE 104 1919 26 Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102 27 Yang M S, Fang L and Chi Y Q 2018 Chin. Phys. B 27 098504 28 Yamada K, Oomaru K, Nakamura S, Sato T and Nakatani Y 2016 Appl. Phys. Lett. 108 042402 29 Lim H, Lee S and Shin H 2014 IEEE Electr Device L 35 193 30 Torunbalci M M, Upadhyaya P, Bhave S A and Camsari K Y 2018 IEEE T. Electron Dev. 65 4628 31 Wang G D, Zhang Y, Wang J K, Zhang Z Z, Zhang K, Zheng Z Y, Klein J O, Ravelosona D, Zhang Y G and Zhao W S 2019 IEEE T. Electron Dev. 66 2431 32 Zeng Z M, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y M, Langer J, Galatsis K, Wang K L and Jiang H W 2012 Acs Nano 6 6115 33 Liu R H, Chen L N, Urazhdin S and Du Y W 2017 Phys. Rev. Appl. 8 021001 34 Chen L N, Urazhdin S, Du Y W and Liu R H 2019 Phys. Rev. Appl. 11 064038 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|