CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology |
Peng Wang(汪鹏)1,2, Jing Li(李静)1,2,†, Xin Wang(王欣)1,2, Heng-San Liu(刘恒三)1,2, Bin Fan(范斌) 1,2, Ping Gan(甘萍) 3, Rui-Feng Guo(郭瑞峰) 1,2, Xue-Yuan Ge(葛学元)1,2,‡, and Miao-Hui Wang(王淼辉)1,2,§ |
1 Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China; 2 State Key Laboratory for Advanced Forming Technology and Equipment, China Academy of Machinery and Technology, Beijing 100083, China; 3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract We simulate the gas-atomization process of a close-coupled annular nozzle for vacuum induction gas atomization at a three-dimensional scale. Moreover, the relationship between the simulated droplet type and experimentally metallic powder is established by comparing the morphology of droplets with powders. Herein, the primary atomization process is described by the volume-of-fluid (VOF) approach, whereas the prediction of powder diameter after secondary atomization is realized by the VOF-Lagrangian method. In addition, to completely reflect the breaking and deformation process of the metallic flow, we employ the VOF model to simulate the secondary atomization process of a single ellipsoidal droplet. The results show that the primary atomization process includes the formation of surface liquid film, appearance of serrated ligaments, and shredding of ligaments. Further, gas recirculation zone plays an important role in formation of the umbrella-shaped liquid film. The secondary atomization process is divided into droplet convergence and dispersion stages, and the predicted powder diameter is basically consistent with the experiment. In general, the four main powder shapes are formed by the interaction of five different typical droplets.
|
Received: 16 September 2020
Revised: 14 October 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
75.47.Np
|
(Metals and alloys)
|
|
81.20.Ev
|
(Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)
|
|
47.55.df
|
(Breakup and coalescence)
|
|
61.82.Bg
|
(Metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51975240) and the Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment (Grant No. SKL2019006). |
Corresponding Authors:
†Corresponding author. E-mail: wangmh@camtc.com.cn ‡Corresponding author. E-mail: gexueyuan@163.com §Corresponding author. E-mail: lijing2012@buaa.edu.cn
|
Cite this article:
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉) Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology 2021 Chin. Phys. B 30 027502
|
1 Chou D T, Wells D, Hong D, Lee B, Kuhn H and Kumta P N 2013 Acta Biomater. 9 8593 2 Li S, Su Y, Ouyang Q and Zhang D 2016 Mater. Lett. 167 118 3 Si C, Tang X, Zhang X, Wang J and Wu W2017 Mater. Design 118 66 4 Li X, Zhu Q, Shu S, Fan J Z and Zhang S M 2019 Powder Technol. 356 759 5 Feng S, Xia M and Ge C C 2017 Chin. Phys. B 26 60201 6 Feng S, Xia M and Ge C C 2018 Chin. Phys. B 27 44701 7 Hao G L, Wang X F and Li X Y 2015 Chin. Phys. Lett. 32 26103 8 Wei M, Chen S, Liang J and Liu C 2017 Vacuum 143 185 9 Anderson I E, White E M H and Dehoff R 2018 Current Opin. Solid State Mater. Sci. 22 8 10 Beckers D, Ellendt N, Fritsching U and Uhlenwinkel V 2020 Adv. Powder Technol. 31 300 11 Lefebvre A H and McDonell V2017 Atomization and Sprays (Florida: CRC press) pp. 1-284 12 Mullis A M, Adkins N J, Aslam Z, Mccarthy I and Cochrane R F2008 Int. J. Powder Metall. 44 55 13 Lagutkin S, Achelis L, Sheikhaliev S, Uhlenwinkel V and Srivastava V 2004 Mater. Sci. Engin. A 383 1 14 \"Unal A 1989 Metall. Trans. B 20 61 15 Ting J, Connor J and Ridder S 2005 Mater. Sci. Engin. A 390 452 16 Hernand ez F, Riedemann T, Tiarks J, Kong B, Regele J, Ward T and Anderson I 2019 TMS 148th Annual Meeting & Exhibition Supplemental Proceedings, March 10-13, 2019, Texas, USA, pp. 1507-1519 17 Henein H, Uhlenwinkel V and Fritsching U2017 Metal Sprays and Spray Deposition(Berlin: Springer) pp. 1-563 18 Zeoli N, Tabbara H and Gu S 2011 Chem. Engin. Sci. 66 6498 19 Zeoli N, Tabbara H and Gu S 2012 Appl. Phys. A 108 783 20 Zhao W, Cao F, Ning Z, Zhang G, Li Z and Sun J2012 Comput. Chem. Engin. 40 58 21 Arachchilage K H, Haghshenas M, Park S, Zhou L, Sohn Y, McWilliams B, Cho K and Kumar R 2019 Adv. Powder Technol. 30 2726 22 Zeoli N and Gu S 2008 Comput. Mater. Sci. 43 268 23 Firmansyah D A, Kaiser R, Zahaf R, Coker Z, Choi T Y and Lee D2014 Jpn. J. Appl. Phys. 53 05 24 Thompson J S, Hassan O, Rolland S and Sienz J 2016 Powder Technol. 291 75 25 Kaiser R, Li C, Yang S and Lee D 2018 Adv. Powder Technol. 29 623 26 Wei M, Chen S, Sun M, Liang J and Wang M2020 Powder Technol. 367 27 Li X G and Fritsching U 2016 J. Mater. Process. Technol. 239 1 28 Mi J, Figliola R S and Anderson I E 1996 Mater. Sci. Engin. A 208 20 29 Markus S, Fritsching U and Bauckhage K 2002 Mater. Sci. Engin. A 326 122 30 Dunkley J J 2019 Johnson Matthey Technol. Rev. 63 226 31 Fritsching U2004 Spray Simulation: Modeling and Numerical Simulation of Sprayforming Metals (New York: Cambridge University Press) pp. 1-269 32 Williams F A1958 Physics of Fluids 1 541 33 Yang Q, Liu Y T, Liu J, Wang L and Wang H W2019Mater. Design 182 108045 34 Matsson J2020 An Introduction to ANSYS Fluent 2019 (New York: SDC Publications) pp. 1-540 35 Rotondi R and Bella G 2006 Int. J. Thermal Sci. 45 168 36 Zeoli N and Gu S 2006 Comput. Mater. Sci. 38 282 37 Patterson M A and Reitz R1998 SAE Trans. 107 27 38 Beale J C and Reitz R D 1999 Atomization and Sprays 9 623 39 Chryssakis C, Assanis D and Tanner F2011 Handbook of Atomization and Sprays(Berlin: Springer) pp. 215-231 40 Matsson J2020 An Introduction to ANSYS Fluent (New York: SDC Publications) pp. 1-574 41 Levi C and Mehrabian R 1982 Metall. Trans. A 13 221 42 Zhang M and Zhang Z 2020 Mater. Today Commun. 25 101423 43 Zeoli N2011 Multiphase Modelling of the Characteristics of Close Coupled Gas Atomization (Birmingham: Aston University) 44 Schwenck D, Ellendt N, Fischer-B\"uhner J, Hofmann P and Uhlenwinkel V 2017 Powder Metall. 60 198 45 Mates S P and Settles G S1996 Adv. Powder Metall. Part. Mater. 1 67 46 Zhao X, Xu J, Zhu X and Zhang S 2009 Sc. Chin. E: Technol. Sci. 52 3046 47 Ashgriz N2011 Handbook of Atomization and Sprays: Theory and Applications (New York: Springer Science & Business Media) pp. 1-927 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|