Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027502    DOI: 10.1088/1674-1056/abc167
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology

Peng Wang(汪鹏)1,2, Jing Li(李静)1,2,†, Xin Wang(王欣)1,2, Heng-San Liu(刘恒三)1,2, Bin Fan(范斌) 1,2, Ping Gan(甘萍) 3, Rui-Feng Guo(郭瑞峰) 1,2, Xue-Yuan Ge(葛学元)1,2,‡, and Miao-Hui Wang(王淼辉)1,2,§
1 Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China; 2 State Key Laboratory for Advanced Forming Technology and Equipment, China Academy of Machinery and Technology, Beijing 100083, China; 3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  We simulate the gas-atomization process of a close-coupled annular nozzle for vacuum induction gas atomization at a three-dimensional scale. Moreover, the relationship between the simulated droplet type and experimentally metallic powder is established by comparing the morphology of droplets with powders. Herein, the primary atomization process is described by the volume-of-fluid (VOF) approach, whereas the prediction of powder diameter after secondary atomization is realized by the VOF-Lagrangian method. In addition, to completely reflect the breaking and deformation process of the metallic flow, we employ the VOF model to simulate the secondary atomization process of a single ellipsoidal droplet. The results show that the primary atomization process includes the formation of surface liquid film, appearance of serrated ligaments, and shredding of ligaments. Further, gas recirculation zone plays an important role in formation of the umbrella-shaped liquid film. The secondary atomization process is divided into droplet convergence and dispersion stages, and the predicted powder diameter is basically consistent with the experiment. In general, the four main powder shapes are formed by the interaction of five different typical droplets.
Keywords:  metallic powder      close-coupled nozzle      two-phase      droplet morphology  
Received:  16 September 2020      Revised:  14 October 2020      Accepted manuscript online:  15 October 2020
PACS:  75.47.Np (Metals and alloys)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  47.55.df (Breakup and coalescence)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51975240) and the Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment (Grant No. SKL2019006).
Corresponding Authors:  Corresponding author. E-mail: wangmh@camtc.com.cn Corresponding author. E-mail: gexueyuan@163.com §Corresponding author. E-mail: lijing2012@buaa.edu.cn   

Cite this article: 

Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉) Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology 2021 Chin. Phys. B 30 027502

1 Chou D T, Wells D, Hong D, Lee B, Kuhn H and Kumta P N 2013 Acta Biomater. 9 8593
2 Li S, Su Y, Ouyang Q and Zhang D 2016 Mater. Lett. 167 118
3 Si C, Tang X, Zhang X, Wang J and Wu W2017 Mater. Design 118 66
4 Li X, Zhu Q, Shu S, Fan J Z and Zhang S M 2019 Powder Technol. 356 759
5 Feng S, Xia M and Ge C C 2017 Chin. Phys. B 26 60201
6 Feng S, Xia M and Ge C C 2018 Chin. Phys. B 27 44701
7 Hao G L, Wang X F and Li X Y 2015 Chin. Phys. Lett. 32 26103
8 Wei M, Chen S, Liang J and Liu C 2017 Vacuum 143 185
9 Anderson I E, White E M H and Dehoff R 2018 Current Opin. Solid State Mater. Sci. 22 8
10 Beckers D, Ellendt N, Fritsching U and Uhlenwinkel V 2020 Adv. Powder Technol. 31 300
11 Lefebvre A H and McDonell V2017 Atomization and Sprays (Florida: CRC press) pp. 1-284
12 Mullis A M, Adkins N J, Aslam Z, Mccarthy I and Cochrane R F2008 Int. J. Powder Metall. 44 55
13 Lagutkin S, Achelis L, Sheikhaliev S, Uhlenwinkel V and Srivastava V 2004 Mater. Sci. Engin. A 383 1
14 \"Unal A 1989 Metall. Trans. B 20 61
15 Ting J, Connor J and Ridder S 2005 Mater. Sci. Engin. A 390 452
16 Hernand ez F, Riedemann T, Tiarks J, Kong B, Regele J, Ward T and Anderson I 2019 TMS 148th Annual Meeting & Exhibition Supplemental Proceedings, March 10-13, 2019, Texas, USA, pp. 1507-1519
17 Henein H, Uhlenwinkel V and Fritsching U2017 Metal Sprays and Spray Deposition(Berlin: Springer) pp. 1-563
18 Zeoli N, Tabbara H and Gu S 2011 Chem. Engin. Sci. 66 6498
19 Zeoli N, Tabbara H and Gu S 2012 Appl. Phys. A 108 783
20 Zhao W, Cao F, Ning Z, Zhang G, Li Z and Sun J2012 Comput. Chem. Engin. 40 58
21 Arachchilage K H, Haghshenas M, Park S, Zhou L, Sohn Y, McWilliams B, Cho K and Kumar R 2019 Adv. Powder Technol. 30 2726
22 Zeoli N and Gu S 2008 Comput. Mater. Sci. 43 268
23 Firmansyah D A, Kaiser R, Zahaf R, Coker Z, Choi T Y and Lee D2014 Jpn. J. Appl. Phys. 53 05
24 Thompson J S, Hassan O, Rolland S and Sienz J 2016 Powder Technol. 291 75
25 Kaiser R, Li C, Yang S and Lee D 2018 Adv. Powder Technol. 29 623
26 Wei M, Chen S, Sun M, Liang J and Wang M2020 Powder Technol. 367
27 Li X G and Fritsching U 2016 J. Mater. Process. Technol. 239 1
28 Mi J, Figliola R S and Anderson I E 1996 Mater. Sci. Engin. A 208 20
29 Markus S, Fritsching U and Bauckhage K 2002 Mater. Sci. Engin. A 326 122
30 Dunkley J J 2019 Johnson Matthey Technol. Rev. 63 226
31 Fritsching U2004 Spray Simulation: Modeling and Numerical Simulation of Sprayforming Metals (New York: Cambridge University Press) pp. 1-269
32 Williams F A1958 Physics of Fluids 1 541
33 Yang Q, Liu Y T, Liu J, Wang L and Wang H W2019Mater. Design 182 108045
34 Matsson J2020 An Introduction to ANSYS Fluent 2019 (New York: SDC Publications) pp. 1-540
35 Rotondi R and Bella G 2006 Int. J. Thermal Sci. 45 168
36 Zeoli N and Gu S 2006 Comput. Mater. Sci. 38 282
37 Patterson M A and Reitz R1998 SAE Trans. 107 27
38 Beale J C and Reitz R D 1999 Atomization and Sprays 9 623
39 Chryssakis C, Assanis D and Tanner F2011 Handbook of Atomization and Sprays(Berlin: Springer) pp. 215-231
40 Matsson J2020 An Introduction to ANSYS Fluent (New York: SDC Publications) pp. 1-574
41 Levi C and Mehrabian R 1982 Metall. Trans. A 13 221
42 Zhang M and Zhang Z 2020 Mater. Today Commun. 25 101423
43 Zeoli N2011 Multiphase Modelling of the Characteristics of Close Coupled Gas Atomization (Birmingham: Aston University)
44 Schwenck D, Ellendt N, Fischer-B\"uhner J, Hofmann P and Uhlenwinkel V 2017 Powder Metall. 60 198
45 Mates S P and Settles G S1996 Adv. Powder Metall. Part. Mater. 1 67
46 Zhao X, Xu J, Zhu X and Zhang S 2009 Sc. Chin. E: Technol. Sci. 52 3046
47 Ashgriz N2011 Handbook of Atomization and Sprays: Theory and Applications (New York: Springer Science & Business Media) pp. 1-927
[1] Impact mechanism of gas temperature in metal powder production via gas atomization
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Bo-Rui Du(杜博睿), Shi-Yuan Shen(申世远), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 054702.
[2] Process modeling gas atomization of close-coupled ring-hole nozzle for 316L stainless steel powder production
Peng Wang(汪鹏), Jing Li(李静), Hen-San Liu(刘恒三), Xin Wang(王欣), Bo-Rui Du(杜博睿), Ping Gan(甘萍), Shi-Yuan Shen(申世远), Bin Fan(范斌), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(5): 057502.
[3] Mechanism from particle compaction to fluidization of liquid-solid two-phase flow
Yue Zhang(张悦), Jinchun Song(宋锦春), Lianxi Ma(马连喜), Liancun Zheng(郑连存), Minghe Liu(刘明贺). Chin. Phys. B, 2020, 29(1): 014702.
[4] Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
Zheng Fu(付峥), Shi-Yu Wu(吴士玉), Kai-Xin Liu(刘凯欣). Chin. Phys. B, 2016, 25(6): 064701.
[5] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[6] Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
Dou Fu-Xiang (窦富祥), Jin Ning-De (金宁德), Fan Chun-Ling (樊春玲), Gao Zhong-Ke (高忠科), Sun Bin (孙斌). Chin. Phys. B, 2014, 23(12): 120502.
[7] Markov transition probability-based network from time series for characterizing experimental two-phase flow
Gao Zhong-Ke (高忠科), Hu Li-Dan (胡沥丹), Jin Ning-De (金宁德). Chin. Phys. B, 2013, 22(5): 050507.
[8] Multi-relaxation-time lattice Boltzmann front tracking method for two-phase flow with surface tension
Xie Hai-Qiong (谢海琼), Zeng Zhong (曾忠), Zhang Liang-Qi (张良奇), Liang Gong-You (梁功有), Hiroshi Mizuseki, Yoshiyuki Kawazoe. Chin. Phys. B, 2012, 21(12): 124703.
[9] Complex network analysis in inclined oil--water two-phase flow
Gao Zhong-Ke(高忠科) and Jin Ning-De(金宁德) . Chin. Phys. B, 2009, 18(12): 5249-5258.
[10] A hybrid scheme for computing incompressible two-phase flows
Zhou Jun(周军), Cai Li(蔡力), and Zhou Feng-Qi(周凤岐). Chin. Phys. B, 2008, 17(5): 1535-1544.
No Suggested Reading articles found!