ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium |
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅)† |
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China |
|
|
Abstract We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex (CAiGV) beams in strongly nonlocal nonlinear medium for the first time through numerical simulations. The magnitude of topological charges and the position of the vortex could change not only the light spot pattern but also the intensity contrast. Meanwhile, we can change the position of the autofocusing and autodefocusing planes by changing the parameter of the incident beam. Furthermore, we can control the peak intensity contrast through choosing properly the truncation factor. As for the radiation force, we study the gradient and the scattering forces of CAiGV beams on Rayleigh dielectric sphere. Our analyses demonstrate that the radiation force can be enhanced by choosing proper parameters of CAiGV beams.
|
Received: 04 August 2020
Revised: 28 October 2020
Accepted manuscript online: 01 December 2020
|
PACS:
|
42.30.Kq
|
(Fourier optics)
|
|
42.25.Dd
|
(Wave propagation in random media)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 11775083). |
Corresponding Authors:
†Corresponding author. E-mail: dmdeng@263.net
|
Cite this article:
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅) Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium 2021 Chin. Phys. B 30 024202
|
1 Efremidis N K and Christodoulides D N 2010 Opt. Lett. 35 4045 2 Papazoglou D G, Efremidis N K, Christodoulides D N and Tzortzakis S 2011 Opt. Lett. 36 1842 3 Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N and Chen Z 2011 Opt. Lett. 36 2883 4 Chremmos I D, Chen Z, Christodoulides D N and Efremidis N K 2012 Phys. Rev. A 85 023828 5 Jiang Y, Huang K and Lu X 2013 Opt. Express 21 24413 6 Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S 2013 Nat. Commun. 4 2622 7 Coullet P, Gil L and Rocca F 1989 Opt. Commun. 73 403 8 Davis J A, Cottrell D M, Sand D 2012 Opt. Express 20 13302 9 Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516 10 Yan L, Gregg P, Karimi E, Rubano A, Marrucci L, Boyd R and Ramachandran S 2015 Optica 2 900 11 Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E and Dholakia K 2001 Science 292 912 12 Wang X L, Chen J, Li Y, Ding J, Guo C S and Wang H T 2010 Phys. Rev. Lett. 105 253602 13 Qiu Y L, Chen Z X and He Y J 2017 Opt. Commun. 389 303 14 Zhou G Q, Chen R P and Ru G Y 2014 Laser Phys. Lett. 11 105001 15 Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2010 Phys. Rev. Lett. 105 253901 16 Wu Z K, Wang Z P, Guo H, Wang W and Gu Y Z 2017 Opt. Express 25 30468 17 Dolev I, Kaminer I, Shapira A, Segev M and Arie A 2012 Phys. Rev. Lett. 108 113903 18 Efremidis N K 2011 Opt. Lett. 36 3006 19 Zhang Y Q, Belic M R, Zhang L, Zhong W P, Zhu D Y, Wang R M and Zhang Y P 2015 Opt. Express 23 10467 20 Conti C, Peccianti M and Assanto G 2004 Phys. Rev. Lett. 92 113902 21 Han T, Chen H, Qin C, Li W, Wang B and Lu P 2018 Phys. Rev. A 97 063815 22 Snyder A W and Mitchell D J 1997 Science 276 1538 23 Bang O, Krolikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619 24 Deng D M and Guo Q 2007 Opt. Lett. 32 3206 25 Zhang H, Li L and Jia S 2007 Phys. Rev. A 76 043833 26 Zang F, Wang Y and Li L 2019 Opt. Express 27 15079 27 Chremmos I, Zhang P, Prakash J, Efremidis N K, Christodoulides D N and Chen Z 2011 Opt. Lett. 36 3675 28 Poon T C and Kim T 2006 Word Scientific 29 Harada Y and Asakura T 1996 Opt. Commun. 124 529 30 Sun c, Lv x, Deng D M, Ma B B, Liu H Z and Hong W Y 2019 Opt. Commun. 445 147 31 Jiang Y F, Huang K K,Lu X H 2013 Opt. Express 21 24413 32 Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|