Abstract We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex (CAiGV) beams in strongly nonlocal nonlinear medium for the first time through numerical simulations. The magnitude of topological charges and the position of the vortex could change not only the light spot pattern but also the intensity contrast. Meanwhile, we can change the position of the autofocusing and autodefocusing planes by changing the parameter of the incident beam. Furthermore, we can control the peak intensity contrast through choosing properly the truncation factor. As for the radiation force, we study the gradient and the scattering forces of CAiGV beams on Rayleigh dielectric sphere. Our analyses demonstrate that the radiation force can be enhanced by choosing proper parameters of CAiGV beams.
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅) Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium 2021 Chin. Phys. B 30 024202
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.