Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 024202    DOI: 10.1088/1674-1056/abcf3b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium

Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅)†
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
Abstract  We study the abruptly autofocusing and autodefocusing properties of the circular Airy Gaussian vortex (CAiGV) beams in strongly nonlocal nonlinear medium for the first time through numerical simulations. The magnitude of topological charges and the position of the vortex could change not only the light spot pattern but also the intensity contrast. Meanwhile, we can change the position of the autofocusing and autodefocusing planes by changing the parameter of the incident beam. Furthermore, we can control the peak intensity contrast through choosing properly the truncation factor. As for the radiation force, we study the gradient and the scattering forces of CAiGV beams on Rayleigh dielectric sphere. Our analyses demonstrate that the radiation force can be enhanced by choosing proper parameters of CAiGV beams.
Keywords:  optical vortices      abruptly autofocusing      radiation force      strongly nonlocal nonlinear  
Received:  04 August 2020      Revised:  28 October 2020      Accepted manuscript online:  01 December 2020
PACS:  42.30.Kq (Fourier optics)  
  42.25.Dd (Wave propagation in random media)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 11775083).
Corresponding Authors:  Corresponding author. E-mail: dmdeng@263.net   

Cite this article: 

Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅) Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium 2021 Chin. Phys. B 30 024202

1 Efremidis N K and Christodoulides D N 2010 Opt. Lett. 35 4045
2 Papazoglou D G, Efremidis N K, Christodoulides D N and Tzortzakis S 2011 Opt. Lett. 36 1842
3 Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N and Chen Z 2011 Opt. Lett. 36 2883
4 Chremmos I D, Chen Z, Christodoulides D N and Efremidis N K 2012 Phys. Rev. A 85 023828
5 Jiang Y, Huang K and Lu X 2013 Opt. Express 21 24413
6 Panagiotopoulos P, Papazoglou D G, Couairon A and Tzortzakis S 2013 Nat. Commun. 4 2622
7 Coullet P, Gil L and Rocca F 1989 Opt. Commun. 73 403
8 Davis J A, Cottrell D M, Sand D 2012 Opt. Express 20 13302
9 Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516
10 Yan L, Gregg P, Karimi E, Rubano A, Marrucci L, Boyd R and Ramachandran S 2015 Optica 2 900
11 Paterson L, MacDonald M P, Arlt J, Sibbett W, Bryant P E and Dholakia K 2001 Science 292 912
12 Wang X L, Chen J, Li Y, Ding J, Guo C S and Wang H T 2010 Phys. Rev. Lett. 105 253602
13 Qiu Y L, Chen Z X and He Y J 2017 Opt. Commun. 389 303
14 Zhou G Q, Chen R P and Ru G Y 2014 Laser Phys. Lett. 11 105001
15 Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2010 Phys. Rev. Lett. 105 253901
16 Wu Z K, Wang Z P, Guo H, Wang W and Gu Y Z 2017 Opt. Express 25 30468
17 Dolev I, Kaminer I, Shapira A, Segev M and Arie A 2012 Phys. Rev. Lett. 108 113903
18 Efremidis N K 2011 Opt. Lett. 36 3006
19 Zhang Y Q, Belic M R, Zhang L, Zhong W P, Zhu D Y, Wang R M and Zhang Y P 2015 Opt. Express 23 10467
20 Conti C, Peccianti M and Assanto G 2004 Phys. Rev. Lett. 92 113902
21 Han T, Chen H, Qin C, Li W, Wang B and Lu P 2018 Phys. Rev. A 97 063815
22 Snyder A W and Mitchell D J 1997 Science 276 1538
23 Bang O, Krolikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
24 Deng D M and Guo Q 2007 Opt. Lett. 32 3206
25 Zhang H, Li L and Jia S 2007 Phys. Rev. A 76 043833
26 Zang F, Wang Y and Li L 2019 Opt. Express 27 15079
27 Chremmos I, Zhang P, Prakash J, Efremidis N K, Christodoulides D N and Chen Z 2011 Opt. Lett. 36 3675
28 Poon T C and Kim T 2006 Word Scientific
29 Harada Y and Asakura T 1996 Opt. Commun. 124 529
30 Sun c, Lv x, Deng D M, Ma B B, Liu H Z and Hong W Y 2019 Opt. Commun. 445 147
31 Jiang Y F, Huang K K,Lu X H 2013 Opt. Express 21 24413
32 Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[1] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[2] Axial acoustic radiation force on an elastic spherical shell near an impedance boundary for zero-order quasi-Bessel-Gauss beam
Yu-Chen Zang(臧雨宸), Wei-Jun Lin(林伟军), Chang Su(苏畅), and Peng-Fei Wu(吴鹏飞). Chin. Phys. B, 2021, 30(4): 044301.
[3] Weak-focused acoustic vortex generated by a focused ring array of planar transducers and its application in large-scale rotational object manipulation
Yuzhi Li(李禹志), Peixia Li(李培霞), Ning Ding(丁宁), Gepu Guo(郭各朴), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2021, 30(4): 044302.
[4] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[5] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[6] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[7] Acoustic radiation force and torque on a lossless eccentric layered fluid cylinder
F G Mitri. Chin. Phys. B, 2020, 29(11): 114302.
[8] Nonlocal effect on resonant radiation force exerted on semiconductor coupled quantum well nanostructures
Jin-Ke Zhang(张金珂), Ting-Ting Zhang(张婷婷), Yu-Liang Zhang(张玉亮), Guang-Hui Wang(王光辉), Dong-Mei Deng(邓冬梅). Chin. Phys. B, 2019, 28(6): 066803.
[9] Characterization of focusing performance of spiral zone plates with fractal structure
Hua-Ping Zang(臧华平), Cheng-Long Zheng(郑程龙), Zi-Wen Ji(吉子雯), Quan-Ping Fan(范全平), Lai Wei(魏来), Yong-Jie Li(李永杰), Kai-Jun Mu(牧凯军), Shu Chen(陈述), Chuan-Ke Wang(王传珂), Xiao-Li Zhu(朱效力), Chang-Qing Xie(谢常青), Lei-Feng Cao(曹磊峰), Er-Jun Liang(梁二军). Chin. Phys. B, 2019, 28(6): 064201.
[10] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[11] Double-slit interference of a relativistic vortex laser
Hao Zhang(张浩), Bai-Fei Shen(沈百飞), Lin-Gang Zhang(张林港). Chin. Phys. B, 2019, 28(1): 014702.
[12] Acoustic radiation force on a multilayered sphere in a Gaussian standing field
Haibin Wang(汪海宾), Xiaozhou Liu(刘晓宙), Sha Gao(高莎), Jun Cui(崔骏), Jiehui Liu(刘杰惠), Aijun He(何爱军), Gutian Zhang(张古田). Chin. Phys. B, 2018, 27(3): 034302.
[13] Acoustic radiation force induced by two Airy-Gaussian beams on a cylindrical particle
Sha Gao(高莎), Yiwei Mao(毛一葳), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2018, 27(1): 014302.
[14] Tunable resonant radiation force exerted on semiconductor quantum well nanostructures:Nonlocal effects
Guang-Hui Wang(王光辉), Xiong-Shuo Yan(颜雄硕), Jin-Ke Zhang(张金珂). Chin. Phys. B, 2017, 26(10): 106802.
[15] Propagation of optical vortex solitons due to the Gouy phase in strongly nonlocal nonlinear media
Wu Xiao-Fei(吴晓飞), Deng Dong-Mei(邓冬梅), and Guo Qi(郭旗). Chin. Phys. B, 2011, 20(8): 084201.
No Suggested Reading articles found!