Abstract We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions (PMDs) from numerical solutions of the two-dimensional (2D) time-dependent Schrödinger equation (TDSE) of with a pair of counter-rotating circularly polarized attosecond pulses. It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state. However, the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state. This sensitivity is attributed to the initial electron density distribution. In addition, we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms. It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.
(Multiphoton ionization and excitation to highly excited states)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074142), the Natural Science Foundation of Jilin Province of China (Grant No. 20180101225JC), and the Graduate Innovation Fund of Jilin University, China (Grant No. 101832020CX337).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.