Abstract This paper conducts a trade-off between efficiency and accuracy of three-dimensional (3D) shape measurement based on the triangulation principle, and introduces a flying and precise 3D shape measurement method based on multiple parallel line lasers. Firstly, we establish the measurement model of the multiple parallel line lasers system, and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration. Then, the constraint of the line spatial frequency, which maximizes the measurement efficiency while ensuring accuracy, is determined according to the height distribution of the object. Secondly, the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed, which provides a fundamental thesis for option of the four system parameters. Thirdly, for the application of the precision measurement in the industrial field, additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3D surface. Finally, compared with the line laser, the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency. Furthermore, the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
Yao Wang(王尧) and Bin Lin(林斌) A fast and precise three-dimensional measurement system based on multiple parallel line lasers 2021 Chin. Phys. B 30 024201
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.