CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes |
Xiang Yu(俞翔)†, Yan Mi(米岩)†, Li-Chen Wang(王利晨)†, Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉)‡ |
Department of Physics, Capital Normal University, Beijing 100048, China |
|
|
Abstract Tumor-targeted magnetic hyperthermia has recently attracted much attention. Magnetic nanoparticles (NPs) are heat mediator nanoprobes in magnetic hyperthermia for cancer treatment. In this paper, single cubic spinel structural Zn0.3Fe2.7O4 magnetic NPs with sizes of 14 nm-20 nm were synthesized, followed by coating with SiO2 shell. The SLP value of Zn0.3Fe2.7O4/SiO2 NPs below 20 nm changes non-monotonically with the concentration of solution under the alternating current (AC) magnetic field of 430 kHz and 27 kA/m. SLP values of all Zn0.3Fe2.7O4/SiO2 NPs appear a peak value with change of solution concentration. The solution concentrations with optimal SLP value decrease with increasing magnetic core size. This work can give guidance to the better prediction and control of the magnetic hyperthermia performance of materials in clinical applications.
|
Received: 15 July 2020
Revised: 20 August 2020
Accepted manuscript online: 27 August 2020
|
PACS:
|
75.50.Mm
|
(Magnetic liquids)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
76.60.Es
|
(Relaxation effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51771124, 51571146, and 51701130). |
Corresponding Authors:
†These authors contributed equally to this work. ‡Corresponding author. E-mail: shulihe@cnu.edu.cn
|
Cite this article:
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉) Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes 2021 Chin. Phys. B 30 017503
|
1 Yoo D, Jeong H, Noh S H, Lee J H and Cheon J 2013 Angew. Chem. Int. Edit. 52 13047 2 Yu K, Liang B, Zheng Y, Exner A, Kolios M, Xu T, Guo D, Cai X, Wang Z, Ran H, Chu L and Deng Z 2019 Theranostics 9 4192 3 Jang J T, Lee J, Seon J, Ju E, Kim M, Kim Y I, Kim M G, Takemura Y, Arbab A S, Wang K W, Kang K W, Park, K H, Paek S H and Bae S 2018 Adv. Mater. 30 1704362 4 Wu H, Liu L, Song L, Ma M, Gu N and Zhang Y 2019 ACS Nano 13 14013 5 Wang B, Chan K F, Yu J, Wang Q, Yang L, Chiu P W Y and Zhang L 2018 Adv. Funct. Mater. 28 1705701 6 Jang J T, Nah H, Lee J H, Moon S H, Kim M G and Cheon J 2009 Angew. Chem. Int. Edit. 48 1234 7 Liu X L, Yang Y, Ng C T, Zhao L Y, Zhang Y, Bay B H, Fan H M and Ding J 2015 Adv. Mater. 27 1939 8 Guardia P, Corato D R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L and Pellegrino T 2012 ACS Nnano 6 3080 9 Lee J H, Jang J T, Choi J, Moon S H, Noh S H, Kim J W, Kim J G, Kim I S, Park K I and Cheon J 2011 Nat. Nanotech. 6 418 10 He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov R and Zeng H 2018 Small 14 1800135 11 Serantes D, Baldomir D, Martinez-Boubeta C, Simeonidis K, Angelakeris M, Natividad E, Castro M, Mediano A, Chen D X, Sanchez A, Balcells LI and Martìnez B 2010 J. Appl. Phys. 108 073918 12 Landi G T 2014 Phys. Rev. B 89 014403 13 Haase C and Nowak U 2012 Phys. Rev. B 85 045435 14 Conde-Leboran I, Baldomir D, Martinez-Boubeta C, Chubykalo-Fesenko O, Morales M P, Salas G, Cabrera D, Camarero J, Teran F J and Serantes D 2015 J. Phys. Chem. C 119 15698 15 Ovejero J G, Cabrera D, Carrey J, Valdivielso T, Salas G and Teran F J 2016 Phys. Chem. Chem. Phys. 18 10954 16 Mehdaoui B, Tan R P, Meffre A, Carrey J, Lachaize S, Chaudret B and Respaud M 2013 Phys. Rev. B 87 174419 17 Branquinho L C, Carri\ ao M S, Costa A S, Zufelato N, Sousa M H, Miotto R, Ivkov R and Bakuzis A F 2013 Sci. Rep. 3 2887 18 Fu R, Yan Y, Roberts C, Liu Z and Chen Y 2018 Sci. Rep. 8 4704 19 Wu L, Jubert P, Berman D, Imaino W I, Nelson A, Zhu H, Zhang S and Sun S 2014 Nano Lett. 14 3395 20 Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leboràn I, Kazakis I, Stefanou G, Pe\ na L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M and Angelakeris M 2012 Adv. Funct. Mater. 22 3737 21 Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370 22 Jordan A, Wust P, Fählin H, John W, Hinz A and Felix R 1993 Int. J. Hyperthermia 9 51 23 Dutz S and Hergt R 2013 Int. J. Hyperthermia 29 790 24 Deatsch A E and Evans B A 2014 J. Magn. Magn. Mater. 354 163 25 Dennis C L, Jackson A J, Borchers J A, Hoopes P J, Strawbridge R, Foreman A R, Lierop J, Grüttner C and Ivkov R 2009 Nanotechnology 20 395103 26 Tan R P, Carrey J and Respaud M 2014 Phys. Rev. B 90 214421 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|