1 Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China 2 National Innovation Institute of Defense Technology, AMS, Beijing 100071, China 3 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
We propose an on-chip reconfigurable micro-ring to engineer the spectral-purity of photons. The micro-ring resonator is designed to be coupled by one or two asymmetric Mach–Zehnder interferometers and the coupling coefficients hence the quality-factors of the pump and the converted photons can be dynamically changed by the interferometer’s internal phase-shifter. We calculate the joint-spectrum function and obtain the spectral-purity of photons and Schmidt number under different phases. We show that it is a dynamical method to adjust the spectral-purity and can optimize the spectral-purity of photons up to near 100%. The condition for high-spectral-purity photons is ensured by the micro-ring itself, so it overcomes the trade-off between spectral purity and brightness in the traditional post-filtering method. This scheme is robust to fabrication variations and can be successfully applied in different fabrication labs and different materials. Such high-spectral-purity photons will be beneficial for quantum information processing like Boson sampling and other quantum algorithms.
Received: 21 September 2020
Revised: 21 September 2020
Accepted manuscript online: 24 September 2020
Fund: the National Basic Research Program of China (Grant Nos. 2017YFA0303700 and 2019YFA0308700), the National Natural Science Foundation of China (Grant Nos. 61632021 and 11690031), and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology).
Corresponding Authors: †These authors contributed equally to this work. ‡Corresponding author. E-mail: pingxu520@nju.edu.cn
Cite this article:
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平) Near 100% spectral-purity photons from reconfigurable micro-rings 2020 Chin. Phys. B 29 114201
Fig. 1.
The theoretical spectral purity as a function of Qs/i/Qp.[24]
Fig. 2.
Schematic of (a) a common single or double-side-coupled micro-ring resonator and (b) a single-AMZI-coupled micro-ring resonator. (c) The resonance strength of the single-AMZI-coupled micro-ring and the AMZIs’ efficient cross-coupling strength with different settings of the phase φ.
Fig. 3.
Simulated spectral purity of the idler photons from the single-AMZI-coupled micro-ring resonator as a function of the phase φ.
Fig. 4.
Simulated signal–idler joint spectral function profiles of the single-AMZI-coupled micro-ring resonator in the cases of (a) φ = 3π/4, (b) π/2, (c) π/4.
Fig. 5.
(a) Schematic of a dual-AMZI-coupled micro-ring resonator. (b) The resonance strength of the dual-AMZI-coupled micro-ring and the two AMZIs’ efficient cross-coupling strength with different settings of the phases φ1 and φ2.
Fig. 6.
Simulated spectral purity of the idler photons from the dual-AMZI-coupled micro-ring resonator as a function of the phase φ2.
Fig. 7.
Simulated signal–idler joint spectral function profiles of the dual-AMZI-coupled micro-ring resonator in the cases of (a) φ2 = π, (b) 3π/4, (c) π/2, and (d) π/4.
[1]
Spring J B Metcalf B J Humphreys P C Kolthammer W S Jin X M Barbieri M Datta A Thomas-Peter N Langford N K Kundys D Gates J C Smith B J Smith P G R Walmsley I A 2013 Science339 798 DOI: 10.1126/science.1231692
[2]
Xue S C Wu J J Xu P Yang X J 2018 Sci. China: Phys. Mech. Astron.61 020313 DOI: 10.1007/s11433-017-9098-5
[3]
Long G L Qin W Yang Z Li J L 2018 Sci. China: Phys. Mech. Astron.61 030311 DOI: 10.1007/s11433-017-9122-2
[4]
Eisaman M D Fan J Migdall A Polyakov S V 2011 Rev. Sci. Instrum.82 071101 DOI: 10.1063/1.3610677
[5]
Loredo J C Zakaria N A Somaschi N Anton C De Santis L Giesz V Grange T Broome M A Gazzano O Coppola G A 2016 Optica3 433 DOI: 10.1364/OPTICA.3.000433
[6]
Somaschi N Giesz V De Santis L Loredo J C Almeida M P Hornecker G Portalupi S L Grange T Anton C Demory J Gómez C Sagnes I Lanzillotti-Kimura N D Lemaítre A Auffeves A White A G Lanco L Senellart P 2016 Nat. Photon.10 340 DOI: 10.1038/nphoton.2016.23
[7]
Wang H He Y M Chung T H Hu H Yu Y Chen S Ding X Chen M C Qin J Yang X X Liu R Z Duan Z C Li J P Gerhardt S Winkler K Jurkat J Wang L J Gregersen N Huo Y H Dai Q Yu S Y Hoefling S Lu C Y Pan J W 2019 Nat. Photon.13 770 DOI: 10.1038/s41566-019-0494-3
[8]
Ding X He Y Duan Z C Gregersen N Chen M C Unsleber S Maier S Schneider C Kamp M Höfling S Lu C Y Pan J W 2016 Phys. Rev. Lett.116 020401 DOI: 10.1103/PhysRevLett.116.020401
[9]
Sun X X Wang P Sheng B W Wang T Chen Z Y Gao K Li M Zhang J Ge W K Arakawa Y Shen B Holmes M Wang X Q 2019 Quantum Engineering1 e20 DOI: 10.1002/que2.20
[10]
Arcari M Sollner I Javadi A Hansen S L Mahmoodian S Liu J Thyrrestrup H Lee E Song J D Stobbe S Lodahl P 2014 Phys. Rev. Lett.113 093603 DOI: 10.1103/PhysRevLett.113.093603
Silverstone J W Bonneau D Ohira K Suzuki N Yoshida H Iizuka N Ezaki M Natarajan C M Tanner M G Hadfield R H Zwiller V Marshall G D Rarity J Obrien J L Thompson M G 2014 Nat. Photon.8 104 DOI: 10.1038/nphoton.2013.339
[17]
Jin H Liu F M Xu P Xia J L Zhong M L Yuan Y Zhou J W Gong Y X Wang W Zhu S N 2014 Phys. Rev. Lett.113 103601 DOI: 10.1103/PhysRevLett.113.103601
[18]
Wang M Wu R B Lin J T Zhang J H Fang Z W Chai Z F Cheng Y 2019 Quantum Engineering1 e9 DOI: 10.1002/que2.9
[19]
Azzini S Grassani D Strain M J Sorel M Helt L G Sipe J E Liscidini M Galli M Bajoni D 2012 Opt. Express20 23100 DOI: 10.1364/OE.20.023100
[20]
Helt L G Yang Z Liscidini M Sipe J E 2010 Opt. Lett.35 3006 DOI: 10.1364/OL.35.003006
[21]
Silverstone J W Santagati R Bonneau D Strain M J Sorel M Obrien J L Thompson M G 2015 Nat. Commun.6 7948 DOI: 10.1038/ncomms8948
[22]
Helt L G Yang Z Liscidini M Sipe J E 2010 Opt. Lett.35 3006 DOI: 10.1364/OL.35.003006
[23]
Faruque I I Sinclair G F Bonneau D Rarity J G Thompson M G 2018 Opt. Express26 20379 DOI: 10.1364/OE.26.020379
[24]
Vernon Z Menotti M Tison C C Steidle J A Fanto M L Thomas P Preble S F Smith A M Alsing P M Liscidini M Sipe J E 2017 Opt. Lett.42 3638 DOI: 10.1364/OL.42.003638
[25]
Wu C Liu Y W Gu X W Xue S C Yu X X Kong Y C Qiang X G Wu J J Zhu Z H Xu P 2019 Chin. Phys. B28 104221 DOI: 10.1088/1674-1056/ab3f9b
[26]
Wu C Liu Y W Gu X W Yu X X Kong Y C Qiang X G Wu J J Zhu Z H Yang X J Xu P 2020 Sci. China: Phys. Mech. Astron.63 220362 DOI: 10.1007/s11433-019-1429-1
[27]
Dai Z Liu Y Xu P Xu W X Yang X J Wu J J 2020 Sci. China: Phys. Mech. Astron.63 250311 DOI: 10.1007/s11433-019-1440-y
Engin E Bonneau D Natarajan C M Clark A S Tanner M G Hadfield R H Dorenbos S N Zwiller V Ohira K Suzuki N Yoshida H Iizuka N Ezaki M O’Brien J L Thompson M G 2013 Opt. Express21 27826 DOI: 10.1364/OE.21.027826
[30]
Azzini S Grassani D Strain M J Sorel M Helt L G Sipe J E Liscidini M Galli M Bajoni D 2012 Opt. Express20 23100 DOI: 10.1364/OE.20.023100
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.