Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088903    DOI: 10.1088/1674-1056/ab969f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influential nodes identification in complex networks based on global and local information

Yuan-Zhi Yang(杨远志)1, Min Hu(胡敏)2, Tai-Yu Huang(黄泰愚)3
1 Air Force Engineering University, Xi'an 710038, China;
2 China Petroleum Planning and Engineering Institute, Beijing 100083, China;
3 Sichuan University of Arts and Science, Dazhou 635000, China
Abstract  Identifying influential nodes in complex networks is essential for network robust and stability, such as viral marketing and information control. Various methods have been proposed to define the influence of nodes. In this paper, we comprehensively consider the global position and local structure to identify influential nodes. The number of iterations in the process of k-shell decomposition is taken into consideration, and the improved k-shell decomposition is then put forward. The improved k-shell decomposition and degree of target node are taken as the benchmark centrality, in addition, as is well known, the effect between node pairs is inversely proportional to the shortest path length between two nodes, and then we also consider the effect of neighbors on target node. To evaluate the performance of the proposed method, susceptible-infected (SI) model is adopted to simulate the spreading process in four real networks, and the experimental results show that the proposed method has obvious advantages over classical centrality measures in identifying influential nodes.
Keywords:  complex networks      influential nodes      global position      local structure      susceptible-infected (SI) model  
Received:  23 April 2020      Revised:  18 May 2020      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
Corresponding Authors:  Min Hu, Min Hu     E-mail:  hu_min_min@163.com;1097762865@qq.com

Cite this article: 

Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚) Influential nodes identification in complex networks based on global and local information 2020 Chin. Phys. B 29 088903

[1] Shao P and Chen H 2019 IEEE Access 7 118509
[2] Arularasan A N, Suresh A and Seerangan K 2019 Cluster Computing 22 4035
[3] Shukla A, Bhattacharyya A, Kuppusamy L, Srivas M and Thattai M 2017 Plos One 12 e0180692
[4] Mou J, Liu C, Chen S, Huang G and Lu X 2017 Sci. Rep. 7 1275
[5] Tan Z Z, Asad J H and Owaidat M Q 2017 Int. J. Circuit Theor. Appl. 45 1942
[6] Owaidat M Q, Al-Badawi A A, Asad J H and Al-Twiessi Mohammed 2018 Chin. Phys. Lett. 35 020502
[7] Chasman D, Siahpirani A F and Roy S 2016 Current Opinion in Biotechnology 39 157
[8] Yuan M, Hong W and Li P 2017 Biochemical Society Transactions 45 1015
[9] Bonacich P 1972 Journal of Mathematical Sociology 2 113
[10] Freeman L C 1978 Social Networks 1 215
[11] Newman M E J 2005 Social Networks 27 39
[12] Bonacich P and Lloyd P 2001 Social Networks 23 191
[13] Chen D, Lü L, Shang M S, Zhang Y C and Zhou T 2012 Physica A 391 1777
[14] Kistak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[15] Zeng A and Zhang C J 2013 Phys. Lett. A 377 1031
[16] Lin J H, Guo Q, Dong W Z, Tang L Y and Liu J G 2014 Phys. Lett. A 378 3279
[17] Arasu A, Cho J, Garcia-Molina H, Paepcke A and Raghavan S 2001 ACM Transactions on Internet Technology 1 2
[18] Lü L, Zhang Y C, Yeung C H and Zhou T 2011 Plos One 6 e21202
[19] Kleinberg J M 1999 J. ACM 46 604
[20] Liu Z, Jiang C, Wang J and Yu H 2015 Knowledge-Based Systems 84 56
[21] Yang Y, Yu L, Wang X, Zhou Z, Chen Y and Kou T 2019 Physica A 526 121118
[22] Mo H, Gao C and Deng Y 2015 Journal of Systems Engineering and Electronics 26 381
[23] Ibnoulouafi A, Haziti M E and Cherifi H 2018 Journal of Statistical Mechanics Theory and Experiment 7 073407
[24] Wang Z, Du C, Fan J and Xing Y 2017 Neurocomputing 260 466
[25] Zhao X, Liu F, Wang J and Li T 2017 International Journal of Geo-Information 6 35
[26] Zhou T, Liu J G, Bai W J, Chen G and Wang B H 2006 Phys. Rev. E 74 056109
[27] Zachary W W 1977 Journal of Anthropological Research 33 452
[28] Gleiser P M and Danon L 2003 Advances in Complex Systems 6 565
[29] Guimerá R, Danon L, Díaz-Guilera A, Giralt F and Arenas A 2003 Phys. Rev. E 68 065103
[30] Kendall M G 1938 Biometrika 30 81
[31] Bae J and Kim S 2014 Physica A 395 549
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[4] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[8] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[9] Detection of influential nodes with multi-scale information
Jing-En Wang(王静恩), San-Yang Liu(刘三阳), Ahmed Aljmiai, and Yi-Guang Bai(白艺光). Chin. Phys. B, 2021, 30(8): 088902.
[10] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[11] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[12] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[13] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[14] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[15] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
No Suggested Reading articles found!