Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 025201    DOI: 10.1088/1674-1056/26/2/025201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Pulse chirping effect on controlling the transverse cavity oscillations in nonlinear bubble regime

H Vosoughian1,3,4, Z Riazi2, H Afarideh3, G Sarri4
1 Laser and Optic Institute, Nuclear Science and Technology Research Institute, Tehran, Iran;
2 Physics and Accelerator School, Nuclear Science and Technology Research Institute, Tehran, Iran;
3 Department of Energy Engineering and Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran, Iran;
4 School of Mathematics and Physics, The Queen's University of Belfast, BT7 1NN Belfast, United Kingdom
Abstract  The propagation of an intense laser pulse in an under-dense plasma induces a plasma wake that is suitable for the acceleration of electrons to relativistic energies. For an ultra-intense laser pulse which has a longitudinal size shorter than the plasma wavelength, λp, instead of a periodic plasma wave, a cavity free from cold plasma electrons, called a bubble, is formed behind the laser pulse. An intense charge separation electric field inside the moving bubble can capture the electrons at the base of the bubble and accelerate them with a narrow energy spread. In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The carrier-envelope phase (CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional (2D) particle-in-cell (PIC) simulations show that the frequency-chirped laser pulses are more effective in controlling the pulse depletion rate and consequently the effect of the CEP in the bubble regime. The results indicate that the utilization of a positively chirped laser pulse leads to an increase in rate of erosion of the leading edge of the pulse that rapidly results in the formation of a steep intensity gradient at the front of the pulse. A more unstable bubble structure, the self-injections in different positions, and high dark current are the results of using a positively chirped laser pulse. For a negatively chirped laser pulse, the pulse depletion process is compensated during the propagation of the pulse in plasma in such a way that results in a more stable bubble shape and therefore, a localized electron bunch is produced during the acceleration process. As a result, by the proper choice of chirping, one can tune the number of self-injected electrons, the size of accelerated bunch and its energy spectrum to the values required for practical applications.
Keywords:  bubble regime      plasma wake field      positively chirped laser pulse  
Received:  18 August 2016      Revised:  04 November 2016      Accepted manuscript online: 
PACS:  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.65.Rr (Particle-in-cell method)  
  52.65.-y (Plasma simulation)  
Corresponding Authors:  H Vosoughian     E-mail:  h.vosoughian@qub.ac.uk

Cite this article: 

H Vosoughian, Z Riazi, H Afarideh, G Sarri Pulse chirping effect on controlling the transverse cavity oscillations in nonlinear bubble regime 2017 Chin. Phys. B 26 025201

[1] Geddes C G R, Toth Cs, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J and Leemans W P 2004 Nature 431 538
[2] Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y and Malka V 2006 Nature 444 737
[3] Blumenfeld I, Clayton C E, Decker F J, Hogan M J, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N, Lu W, Marsh K A, Mori W B, Muggli P, Oz E, Siemann R H, Walz D and Zhou M 2007 Nature 445 741
[4] Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A and Silva L O 2007 Phys. Rev. STAB 10 061301
[5] Zhao X Y, Xie B S, Wu H C, Zhang S, Hong X R and Aimidula A 2012 Phys. Plasmas 19 033108
[6] Wang J W, Yu W, Yu M Y, Xu H, Ju J J, Luan S X, Murakami M, Zepf M and Rykovanov S 2016 Phys. Rev. Accel. Beams. 19 021301
[7] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[8] Su H Y, Huang Y S, Wang N Y, Tang X Z and Lu W 2014 Chin. Phys. Lett. 31 075202
[9] Yin C L, Wang W M, Liao G Q, Li M C, Li Y T and Zhang J 2015 Acta Phys. Sin. 64 144102 (in Chinese)
[10] Wu F J, Zhou W M, Shan L Q, Li F, Liu D X, Zhang Z M, Li B Y, Bi B, Wu B, Wang W W, Zhang F, Gu Y Q and Zhang B H 2014 Acta Phys. Sin. 63 094101 (in Chinese)
[11] Li W T, Wang W T, Liu J S, Wang C, Zhang Z J, Qi R, Yu C H, Li R X and Xu Z Z 2015 Chin. Phys. B 24 015205
[12] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R and Esarey E 2014 Phys. Rev. Lett. 113 245002
[13] Sprangle P, Esarey E, Krall J and Joyce G 1992 Phys. Rev. Lett. 69 2200
[14] Esarey E, Sprangle P, Krall J, Ting A and Joyce G 1993 Phys. Fluids B 5 2690
[15] GorbunovL M and Kirsanov V I 1987 Sov. Phys. JETP 66 290
[16] Esarey E, Sprangle P, Krall J and Ting A 1996 IEEE Trans. Plasma Sci. 24 252
[17] Akhiezer A I and Polovin R V 1956 Sov. Phys. JETP 3 696
[18] Dawson J M 1959 Phys. Rev. 113 383
[19] Pukhov A and Meyer-terVehn J 2002 Appl. Phys. B: Lasers Opt. 74 355
[20] Zhidkov A, Koga J, Hosokai T, Kinoshita K and Uesaka M 2004 Phys. Plasmas 11 5379
[21] Lu W, Huang C, Zhou M, Mori W B and Katsouleas T 2006 Phys. Rev. Lett. 96 165002
[22] Ma Y, Chen M, Hafz N A M, Li D Z, Huang K, Yan W C, Dunn J, Sheng Z M and Zhang J 2014 Appl. Phys. Lett. 105 161110
[23] Lee S, Lee T H, Gupta D N, Uhm H S and Suk H 2015 Plasma Phys. Control. Fusion 57 075002
[24] Hafz N A M, Lee S K, Jeong T M and Lee J 2011 Nucl. Instru. Methods Phys. Res. A 637 S51
[25] DeMartini F, Gustafson T K and Kelley P 1967 Phys. Rev. 164 312
[26] Kalmykov S Y, Beck A, Yi S A, Khudik V N, Downer M C, Lefebvre E, Shadwick B A and Umstadter D P 2011 Phys. Plasmas 18 056704
[27] Faure J, Glinec Y, Santos J J, Ewald F, Rousseau J P, Kiselev S, Pukhov A, Hosokai T and Malka V 2005 Phys. Rev. Lett. 95 205003
[28] Kalmykov S Y, Beck A, Davoine X, Lefebvre E and Shadwick B A 2012 New J. Phys. 14 033025
[29] Decker C D, Mori W B, Tzeng K C and Katsouleas T 1996 Phys. Plasmas 3 2047
[30] Popp A, Vieira J,Osterhoff J, Major Zs, Horlein R, Fuchs M, Weingartner R, Rowlands-Rees T R, Marti M, Fonseca R A, Martins S F, Silva L O, Hooker S M, Krausz F, Gruner F and Karsch S 2010 Phys. Rev. Lett. 105 215001
[31] Sprangle P, Tang C M and Esarey E 1987 IEEE Trans. Plasma Sci. PS-15 145
[32] Max C E, Arons J and Langdon A B 1974 Phys. Rev. Lett. 33 209
[33] Mori W B, Decker C D, Katsouleas T and Hinkel D E 1994 Phys. Rev. Lett. 72 1482
[34] Esarey E, Krall J and Sprangle P 1994 Phys. Rev. Lett. 72 2887
[35] Bulanov S V, Inovenkov I N, KirsanovV I, Naumova N M and Sakharov A S 1992 Phys. Fluids B 4 1935
[36] Sprangle P and Esarey E 1991 Phys. Rev. Lett. 67 2021
[37] Esarey E and Sprangle P 1992 Phys. Rev. A 45 5872
[38] Sakharaov A S and Kirsanov V I 1994 Phys. Rev. E 49 3274
[39] Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E and De Silvestri S 2001 Nature 414 182
[40] Cormier E and Lambropoulos P 1998 Eur. Phys. J. D 2 15
[41] Nerush E N and Kostyukov I Yu 2009 Phys. Rev. Lett. 103 035001
[42] See http://ccpforge.cse.rl.ac.uk/gf/project/epoch/for"EPOCH: Extendable PIC Open Collaboration" (2011)
[43] Afhami S and EslamiE 2014 Phys. Plasmas 21 063108
[1] Monoenergetic electron parameters in a spheroid bubble model
H. Sattarian, Sh. Rahmatallahpur, T. Tohidi. Chin. Phys. B, 2013, 22(2): 025203.
[2] Electron trajectory evaluation in laser-plasma interaction for effective output beam
P. Zobdeh, R. Sadighi-Bonabi, and H. Afarideh. Chin. Phys. B, 2010, 19(6): 064210.
No Suggested Reading articles found!