Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 076701    DOI: 10.1088/1674-1056/ab8ac8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Generating two-dimensional quantum gases with high stability

Bo Xiao(肖波)1,2, Xuan-Kai Wang(王宣恺)1,2, Yong-Guang Zheng(郑永光)1,2, Yu-Meng Yang(杨雨萌)1,2, Wei-Yong Zhang(章维勇)1,2, Guo-Xian Su(苏国贤)1,2, Meng-Da Li(李梦达)1,2, Xiao Jiang(江晓)1,2, Zhen-Sheng Yuan(苑震生)1,2
1 Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
Abstract  Quantum gas microscopy has enabled the study on intriguing properties of ultracold atoms in optical lattices. It provides the cutting-edge technology for manipulating quantum many-body systems. In such experiments, atoms have to be prepared into a two-dimensional (2D) system for being resolved by microscopes with limited depth of focus. Here we report an experiment on slicing a single layer of the atoms trapped in a few layers of pancake-shaped optical traps to create a 2D system. This technique is implemented with a microwave “knife”, i.e., a microwave field with a frequency defined by the resonant condition with the Zeeman-shifted atomic levels related to a gradient magnetic field. It is crucial to keep a stable preparation of the desired layer to create the 2D quantum gas for future experimental applications. To achieve this, the most important point is to provide a gradient magnetic field with low noises and slow drift in combination with a properly optimized microwave pulse. Monitoring the electric current source and the environmental magnetic field, we applied an actively stabilizing circuit and realized a field drift of 0.042(3) mG/hour. This guarantees creating the single layer of atoms with an efficiency of 99.92(3)% while atoms are hardly seen in other layers within 48 hours, satisfying future experimental demands on studying quantum many-body physics.
Keywords:  ultracold atoms      optical lattices      two-dimensional quantum gases      quantum-gas microscope  
Received:  14 February 2020      Revised:  13 April 2020      Accepted manuscript online: 
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  05.30.-d (Quantum statistical mechanics)  
  37.10.Jk (Atoms in optical lattices)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301603), the National Natural Science Foundation of China (Grant No. 11874341), Anhui Initiative in Quantum Information Technologies, and Chinese Academy of Sciences.
Corresponding Authors:  Zhen-Sheng Yuan     E-mail:  yuanzs@ustc.edu.cn

Cite this article: 

Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生) Generating two-dimensional quantum gases with high stability 2020 Chin. Phys. B 29 076701

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Bakr W S, Gillen J I, Peng A, Fölling S and Greiner M 2009 Nature 462 74
[3] Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I and Kuhr S 2010 Nature 467 68
[4] Haller E, Hudson J, Kelly A, Cotta D A, Peaudecerf B, Bruce G D and Kuhr S 2015 Nat. Phys. 11 738
[5] Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T and Zwierlein M W 2015 Phys. Rev. Lett. 114 193001
[6] Edge G J A, Anderson R, Jervis D, McKay D C, Day R, Trotzky S and Thywissen J H 2015 Phys. Rev. A 92 063406
[7] Parsons M F, Huber F, Mazurenko A, Chiu C S, Setiawan W, Wooley-Brown K, Blatt S and Greiner M 2015 Phys. Rev. Lett. 114 213002
[8] Islam R, Ma R, Preiss P M, Eric Tai M, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77
[9] Choi J y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Science 352 1547
[10] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[11] Berezinskii V L 1972 J. Exp. Theor. Phys. 34 610
[12] Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S and Pan J W 2016 Nat. Phys. 12 783
[13] Gillen J I, Bakr W S, Peng A, Unterwaditzer P, Fölling S and Greiner M 2009 Phys. Rev. A 80 021602
[14] Bender H, Courteille P, Zimmermann C and Slama S 2009 Appl. Phys. B: Lasers Opt. 96 275
[15] Karski M, Förster L, Choi J M, Steffen A, Belmechri N, Alt W, Meschede D and Widera A 2010 New J. Phys. 12 065027
[16] Peaudecerf B, Andia M, Brown M, Haller E and Kuhr S 2019 New J. Phys. 21 013020
[17] Greif D, Parsons M F, Mazurenko A, Chiu C S, Blatt S, Huber F, Ji G and Greiner M 2016 Science 351 953
[18] Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H and Zwierlein M W 2016 Phys. Rev. Lett. 116 235301
[19] Mazurenko A, Chiu C S, Ji G, Parsons M F, Kanász-Nagy M, Schmidt R, Grusdt F, Demler E, Greif D and Greiner M 2017 Nature 545 462
[20] Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I and Gross C 2016 Science 353 1257
[21] Edge G 2017 Imaging Fermionic Atoms in a Quantum Gas Microscope (PhD dissertation) (Toronto: University of Toronto)
[22] Zener C 1932 Proc. R. Soc. Lond. A 137 696
[23] Foot C J 2005 Atomic Physics (New York: Oxford University Press) pp. 127-128
[24] Garwood M and DelaBarre L 2001 J. Magn. Reson. 153 155
[25] Dedman C J, Dall R G, Byron L J and Truscott A G 2007 Rev. Sci. Instrum. 78 024703
[26] Merkel B, Thirumalai K, Tarlton J E, Schäfer V M, Ballance C J, Harty T P and Lucas D M 2019 Rev. Sci. Instrum. 90 044702
[27] Xu X T, Wang Z Y, Jiao R H, Yi C R, Sun W and Chen S 2019 Rev. Sci. Instrum. 90 054708
[28] Elíasson O, Heck R, Laustsen J S, Napolitano M, Müller R, Bason M G, Arlt J J and Sherson J F 2019 J. Phys. B: At. Mol. Opt. Phys. 52 075003
[29] Kantian A, Langer S and Daley A J 2018 Phys. Rev. Lett. 120 60401
[1] Enhancement of the photoassociation of ultracold atoms via a non-resonant magnetic field
Ji-Zhou Wu(武寄洲), Yu-Qing Li(李玉清), Wen-Liang Liu(刘文良), Peng Li(李鹏), Xiao-Feng Wang(王晓锋), Peng Chen(陈鹏), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(8): 083303.
[2] Dynamics of Airy beams in parity-time symmetric optical lattices
Rui-Hong Chen(陈睿弘), Wei-Yi Hong(洪伟毅). Chin. Phys. B, 2019, 28(5): 054202.
[3] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
[4] Bifurcated overtones of one-way localized Fabry–Pérot resonances in parity-time symmetric optical lattices
Fatma Nafaa Gaafer, Yaxi Shen(沈亚西), Yugui Peng(彭玉桂), Aimin Wu(武爱民), Peng Zhang(张鹏), Xuefeng Zhu(祝雪丰). Chin. Phys. B, 2017, 26(7): 074218.
[5] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[6] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[7] The effect of s-wave scattering length on self-trapping and tunneling phenomena of Fermi gases in one-dimensional accelerating optical lattices
Jia Wei (贾伟), Dou Fu-Quan (豆福全), Sun Jian-An (孙建安), Duan Wen-Shan (段文山). Chin. Phys. B, 2015, 24(4): 040307.
[8] Systematically investigating the polarization gradient cooling in an optical molasses of ultracold cesium atoms
Ji Zhong-Hua (姬中华), Yuan Jin-Peng (元晋鹏), Zhao Yan-Ting (赵延霆), Chang Xue-Fang (常雪芳), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(11): 113702.
[9] Experiments on trapping ytterbium atoms in optical lattices
Zhou Min (周敏), Chen Ning (陈宁), Zhang Xiao-Hang (张晓航), Huang Liang-Yu (黄良玉), Yao Mao-Fei (姚茂飞), Tian Jie (田洁), Gao Qi (高琪), Jiang Hai-Ling (蒋海灵), Tang Hai-Yao (唐海瑶), Xu Xin-Ye (徐信业). Chin. Phys. B, 2013, 22(10): 103701.
[10] Impurity-induced localization of Bose-Einstein condensates in one-dimensional optical lattices
Wang Jian-Jun(王建军), Zhang Ai-Xia(张爱霞), and Xue Ju-Kui(薛具奎) . Chin. Phys. B, 2011, 20(8): 080308.
[11] Tunneling dynamics of Bose–Einstein condensates with higher-order interactions in optical lattice
Tie Lu(铁璐) and Xue Ju-Kui(薛具奎) . Chin. Phys. B, 2011, 20(12): 120311.
[12] Controllable optical multi-well trap and its optical lattices using compounded cosine patterns
Zhou Qi(周琦), Lu Jun-Fa(陆俊发), and Yin Jian-Ping(印建平). Chin. Phys. B, 2010, 19(12): 123203.
[13] Energy band structure of spin-1 condensates in optical lattices
Li Zhi(李志), Zhang Ai-Xia(张爱霞), Ma Juan(马娟), and Xue Ju-Kui(薛具奎). Chin. Phys. B, 2010, 19(10): 100306.
[14] Effect of interaction strength on gap solitons of Bose--Einstein condensates in optical lattices
Yang Ru-Shu(杨如曙) and Yang Jiang-He(杨江河). Chin. Phys. B, 2008, 17(4): 1189-1195.
[15] Transmission probability of the two-mode mazer with injected atomic coherence
Yuan Chun-Hua (袁春华), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2005, 14(1): 144-148.
No Suggested Reading articles found!