1 Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
Abstract Quantum gas microscopy has enabled the study on intriguing properties of ultracold atoms in optical lattices. It provides the cutting-edge technology for manipulating quantum many-body systems. In such experiments, atoms have to be prepared into a two-dimensional (2D) system for being resolved by microscopes with limited depth of focus. Here we report an experiment on slicing a single layer of the atoms trapped in a few layers of pancake-shaped optical traps to create a 2D system. This technique is implemented with a microwave “knife”, i.e., a microwave field with a frequency defined by the resonant condition with the Zeeman-shifted atomic levels related to a gradient magnetic field. It is crucial to keep a stable preparation of the desired layer to create the 2D quantum gas for future experimental applications. To achieve this, the most important point is to provide a gradient magnetic field with low noises and slow drift in combination with a properly optimized microwave pulse. Monitoring the electric current source and the environmental magnetic field, we applied an actively stabilizing circuit and realized a field drift of 0.042(3) mG/hour. This guarantees creating the single layer of atoms with an efficiency of 99.92(3)% while atoms are hardly seen in other layers within 48 hours, satisfying future experimental demands on studying quantum many-body physics.
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301603), the National Natural Science Foundation of China (Grant No. 11874341), Anhui Initiative in Quantum Information Technologies, and Chinese Academy of Sciences.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.