Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110602    DOI: 10.1088/1674-1056/23/11/110602
GENERAL Prev   Next  

Equivalent comparison and analysis between different nominal frequencies

Li Zhi-Qi (李智奇), Wei Zhong (韦中), Zhou Wei (周渭), Song Hui-Min (宋慧敏), Lu Wei-Hao (鲁伟昊)
Department of Measurement and Instrumentation, Xidian University, Xi'an 710071, China
Abstract  We analyze the phenomena of phase group synchronization between the different nominal frequency signals and propose a new theory of the equivalent comparison between them. The exact expression of the equivalent comparison is deduced. High resolution frequency measurement and phase comparison can be realized using this theory with the divider. For avoiding the frequency mixing, multiplication and synthesis, the system phase noise is improved and the higher resolution comparison and measurement are achieved between the different nominal frequencies by theory.
Keywords:  phase difference      group synchronization      equivalent comparison      frequency measurement  
Received:  06 April 2014      Revised:  08 May 2014      Accepted manuscript online: 
PACS:  06.30.Ft (Time and frequency)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10978017 and 61201288) and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140413).
Corresponding Authors:  Li Zhi-Qi     E-mail:  zhiqili_9@126.com

Cite this article: 

Li Zhi-Qi (李智奇), Wei Zhong (韦中), Zhou Wei (周渭), Song Hui-Min (宋慧敏), Lu Wei-Hao (鲁伟昊) Equivalent comparison and analysis between different nominal frequencies 2014 Chin. Phys. B 23 110602

[1] Getting I A 1993 IEEE Spectrum 30 36
[2] Weiss M A, Yao J and Li J 2012 Proc. 44th PTTI Meeting, November 26-29, 2012 Reston, Virginia, pp. 179-186
[3] Mochizuki K, Uchino M and Morikawa T 2007 IEEE Trans. Instrum. Meas. 56 1887
[4] Bosco G C, Garcocz M, Lind K, Pogliano U, Rietveld G, Tarasso V, Voljc B and Zachovalová V N 2011 IEEE Trans. Instrum. Meas. 60 2359
[5] Yu J G, Zhou W, Du B J, Dong S F and Fan Q Y 2012 Chin. Phys. Lett. 29 070601
[6] Li Z Q, Zhou W, Zhou H, Zhang X P and Zhao J 2013 Rev. Sci. Instrum. 84 025106
[7] Zhou W, Ou X, Zhou H, Wang H and Qu B Y 2006 The Measurement and Control Technology of Time and Frequency (Vol. 1) (Shaanxi: Xidian University Press) pp. 118-120 (in Chinese)
[8] Zhou W and Zhu G F 1986 Frequency and Time Measurement (Vol. 1) (Shaanxi: Science and Technology Press) pp. 63-65 (in Chinese)
[9] Miao M, Zhou W and Wang B 2012 Rev. Sci. Instrum. 83 024706
[10] Li Z Q, Zhou W, Chen F X and Liu C G 2010 Chin. Phys. B 19 090601
[11] Atsushi Y, Nobuyasu S, Shigeo N, Ying L, Hiroshi I, Hidekazu H, Motohiro K and Tetsuya I 2012 Appl. Phys. Express 5 022701
[12] Sesia I, Galleani L and Tavella P 2011 IEEE Trans. Aerosp. Electron. Syst. 47 884
[13] Jain S, Nandy S, Chakraborty G, Kumar C S, Ray R and Shome S N 2011 IEEE Int. Conf. on Signal Processing, Communications and Computing, September 14-16, 2011 New York, USA, pp. 1-4
[14] Anne L C, Jürgen A, Jelmer J R, Daniel O, Niels K and Eugene S P 2010 New J. Phys. 12 065032
[1] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[2] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[3] Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring
Chuangye Wang(王创业), Tigang Ning(宁提纲), Jing Li(李晶), Li Pei(裴丽), Jingjing Zheng(郑晶晶), and Jingchuan Zhang(张景川). Chin. Phys. B, 2022, 31(1): 010702.
[4] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[5] Bubble translation driven by pulsation in a double-bubble system
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2020, 29(3): 034303.
[6] Effect of the fluctuant acoustic channel on the gain of a linear array in the ocean waveguide
Lei Xie(谢磊), Chao Sun(孙超), Guang-Yu Jiang(蒋光禹), Xiong-Hou Liu(刘雄厚), De-Zhi Kong(孔德智). Chin. Phys. B, 2018, 27(11): 114301.
[7] Precision frequency measurement of 1S0-3P1 intercombination lines of Sr isotopes
Liu Hui (刘辉), Gao Feng (高峰), Wang Ye-Bing (王叶兵), Tian Xiao (田晓), Ren Jie (任洁), Lu Ben-Quan (卢本全), Xu Qin-Fang (徐琴芳), Xie Yu-Lin (谢玉林), Chang Hong (常宏). Chin. Phys. B, 2015, 24(1): 013201.
[8] Analysis of the injection-locked magnetron with a mismatched circulator
Yue Song (岳松), Zhang Zhao-Chuan (张兆传), Gao Dong-Ping (高冬平). Chin. Phys. B, 2014, 23(8): 088402.
[9] A sensitive method of determining optic axis azimuth based on laser feedback
Wu Yun (吴云), Zhang Peng (张鹏), Chen Wen-Xue (陈文学), Tan Yi-Dong (谈宜东). Chin. Phys. B, 2013, 22(12): 124205.
[10] A super-high resolution frequency standard measuring approach based on phase coincidence characteristics between signals
Li Zhi-Qi(李智奇), Zhou Wei(周渭), Chen Fa-Xi(陈发喜), and Liu Chen-Guang(刘晨光). Chin. Phys. B, 2010, 19(9): 090601.
[11] Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal
Zhang Bing(张冰), Sun Xiu-Dong(孙秀冬), and Jiang Xiang-Qian(姜向前). Chin. Phys. B, 2010, 19(8): 083201.
[12] A diode laser spectrometer at 634nm and absolute frequency measurements using optical frequency comb
Yi Lin(伊林), Yuan Jie(袁杰), Qi Xiang-Hui(齐向晖), Chen Wen-Lan(陈文兰), Zhou Da-Wei(周大伟), Zhou Tong(周通), Zhou Xiao-Ji(周小计), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2009, 18(4): 1409-1412.
[13] The spatial properties of atomic Raman--Nath diffraction
Li Li-Ping(李利平), Zhang Li-Yan (张利彦), Song Pei-Jun(宋佩君), Xie Xiao-Tao(谢小涛), and Li Wei-Bin(李伟斌) . Chin. Phys. B, 2007, 16(8): 2428-2432.
[14] Electron acceleration by two crossed Bessel--Gaussian beams in vacuum
Zhao Zhi-Guo(赵志国) and Lü Bai-Da(吕百达). Chin. Phys. B, 2006, 15(10): 2332-2337.
No Suggested Reading articles found!