Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 104210    DOI: 10.1088/1674-1056/26/10/104210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Damage threshold influenced by polishing imperfection distribution under 355-nm laser irradiation

Zhen Yu(余振)1,2, Hong-Ji Qi(齐红基)1, Wei-Li Zhang(张伟丽)1, Hu Wang(王虎)1,2, Bin Wang(王斌)1,2, Yue-Liang Wang(王岳亮)1,2, Hao-Peng Huang(黄昊鹏)1,2
1. Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A systematic interpretation of laser-induced damage in the nanosecond regime is realized with a defect distribution buried inside the redeposited layer arising from a polishing process. Under the 355-nm laser irradiation, the size dependence of the defect embedded in the fused silica can be illustrated through the thermal conduction model. Considering CeO2 as the major initiator, the size distribution with the power law model is determined from the damage probability statistics. To verify the accuracy of the size distribution, the ion output scaling with depth for the inclusion element is obtained with the secondary ion mass spectrometer. For CeO2 particulates in size of the depth interval with ion output satisfied in the negative exponential form, the corresponding density is consistent with that of the identical size in the calculated size distribution. This coincidence implies an alternative method for the density analysis of photoactive imperfections within optical components at the semi-quantitative level based on the laser damage tests.
Keywords:  laser-induced damage      size distribution      photoactive imperfection  
Received:  10 March 2017      Revised:  12 May 2017      Accepted manuscript online: 
PACS:  42.70.Hj (Laser materials)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  78.20.nb (Photothermal effects)  
Corresponding Authors:  Hong-Ji Qi     E-mail:  qhj@siom.ac.cn

Cite this article: 

Zhen Yu(余振), Hong-Ji Qi(齐红基), Wei-Li Zhang(张伟丽), Hu Wang(王虎), Bin Wang(王斌), Yue-Liang Wang(王岳亮), Hao-Peng Huang(黄昊鹏) Damage threshold influenced by polishing imperfection distribution under 355-nm laser irradiation 2017 Chin. Phys. B 26 104210

[1] Miller P E, Suratwala T I, Bude J D, Laurence T A, Shen N, Steele W A, Feit M D, Menapace J A and Wong L L 2010 Laser Damage Symposium XLI:Annual Symposium on Optical Materials for High Power Lasers, September 21-23, 2009, Colorado, USA, p. 75040X
[2] Gallais L, Capoulade J, Wagner F, Natoli J Y and Commandre M 2007 Opt. Commun. 272 221
[3] O'Connell and Robert M 1992 Appl. Opt. 31 4143
[4] Feit M D and Rubenchik A M 2004 XXXV Annual Symposium on Optical Materials for High Power Lasers:Boulder Damage Symposium, September 20-22, 2003, Colorado, USA, p. 74
[5] Krol H, Gallais L, Grezes-Besset C, Natoli J Y and Commandréa M 2005 Opt. Commun. 256 184
[6] Gallais L, Capoulade J, Natoli J Y and Commandré M 2008 J. Appl. Phys. 104 053120
[7] Liu W W, Wei C Y, Yi K and Shao J D 2015 Chin. Opt. Lett. 13 041407
[8] Dong Z C, Cheng H B, Ye Y and Tam H Y 2014 Appl. Opt. 53 5841
[9] Feit M D, Campbell J H, Faux D R, Genin F R, Kozlowski M R, Rubenchik A M, Riddle R A, Salleo A and Yoshiyama J M 1998 Laser-induced damage in optical materials, October 6-8, 1997, Colorado, USA, p. 350
[10] Gao X, Feng G Y, Han J H, Chen N J, T C and Zhou S H 2012 Appl. Opt. 51 2463
[11] Papernov S and Schmid A W 2002 J. Appl. Phys. 92 5720
[12] Bude J, Guss G, Matthews M and Spaeth M L 2007 Boulder Damage Symposium XXXIX:Annual Symposium on Optical Materials for High Power Lasers, September 24-26, 2007, Colorado, USA, p. 672009
[13] Negres R A, Liao Z M, Abdulla G M, Cross D A, Norton M A and Carr C W 2011 Appl. Opt. 50 D12
[14] ISO21254-12011"Lasers and Laser-Related Equipment-Methods for Laser-Irradiation-Induced Damage Threshold-Part 1:Definitions and General Principles"
[15] Porteus J O and Seitel S C 1984 Appl. Opt. 23 3796
[16] Kozlowski M R, Carr J, Hutcheon I D, Torres R A, Sheehan L M, Camp D W and Yan M 1998 Laser-Induced Damage in Optical Materials, October 6-8,1997, Colorado, USA, p. 365
[1] Inversion method of bubble size distribution based on acoustic nonlinear coefficient measurement
Jie Shi(时洁), Yulin Liu(刘宇林), Shengguo Shi(时胜国), Anding Deng(邓安定), Hongdao Li(李洪道). Chin. Phys. B, 2020, 29(8): 084301.
[2] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[3] Laser-induced damage threshold in HfO2/SiO2 multilayer films irradiated by β-ray
Mei-Hua Fang(方美华), Peng-Yu Tian(田鹏宇), Mao-Dong Zhu(朱茂东), Hong-Ji Qi(齐红基), Tao Fei(费涛), Jin-Peng Lv(吕金鹏), Hui-Ping Liu(刘会平). Chin. Phys. B, 2019, 28(2): 024215.
[4] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[5] Simultaneous estimation of aerosol optical constants and size distribution from angular light-scattering measurement signals
Zhen-Zong He(贺振宗), Dong Liang(梁栋), Jun-Kui Mao(毛军逵), Xing-Si Han(韩省思). Chin. Phys. B, 2018, 27(5): 059101.
[6] Experimental demonstration of narrow-band rugate minus filters using rapidly alternating deposition technology
Ying Zhang(章瑛), Yan-Zhi Wang(王胭脂), Jiao-Ling Zhao(赵娇玲), Jian-Da Shao(邵建达), Shuang-Chen Ruan(阮双琛). Chin. Phys. B, 2018, 27(5): 054217.
[7] Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics
Xiang He(何祥), Heng Zhao(赵恒), Gang Wang(王刚), Peifan Zhou(周佩璠), Ping Ma(马平). Chin. Phys. B, 2016, 25(8): 088105.
[8] Subsurface defect characterization and laser-induced damage performance of fused silica optics polished with colloidal silica and ceria
Xiang He(何祥), Gang Wang(王刚), Heng Zhao(赵恒), Ping Ma(马平). Chin. Phys. B, 2016, 25(4): 048104.
[9] Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica
Liang Yang(杨亮), Xia Xiang(向霞), Xin-Xiang Miao(苗心向), Li Li(李莉), Xiao-Dong Yuan(袁晓东), Zhong-Hua Yan(晏中华), Guo-Rui Zhou(周国瑞), Hai-Bing Lv(吕海兵), Wan-Guo Zheng(郑万国), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2016, 25(1): 014210.
[10] Analysis of the spatial filter of a dielectric multilayer film reflective cutoff filter-combination device
Zhang Ying (章瑛), Qi Hong-Ji (齐红基), Yi Kui (易葵), Wang Yan-Zhi (王胭脂), Sui Zhan (隋展), Shao Jian-Da (邵建达). Chin. Phys. B, 2015, 24(10): 104216.
[11] Effect of fused silica subsurface defect site density on light intensification
Li Li (李莉), Xiang Xia (向霞), Yuan Xiao-Dong (袁晓东), He Shao-Bo (贺少勃), Jiang Xiao-Dong (蒋晓东), Zheng Wan-Guo (郑万国), Zu Xiao-Tao (祖小涛). Chin. Phys. B, 2013, 22(5): 054207.
[12] The effect of laser beam size on laser-induced damage performance
Han Wei(韩伟), Wang Fang(王芳), Zhou Li-Dan(周丽丹), Feng Bin(冯斌), Jia Huai-Ting(贾怀庭), Li Ke-Yu(李恪宇), Xiang Yong(向勇), and Zheng Wan-Guo(郑万国) . Chin. Phys. B, 2012, 21(7): 077901.
[13] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
[14] Incident laser modulation of a repaired damage site with a rim in fused silica rear subsurface
Li Li(李莉), Xiang Xia(向霞), Zu Xiao-Tao(祖小涛), Yuan Xiao-Dong(袁晓东), He Shao-Bo(贺少勃), Jiang Xiao-Dong(蒋晓东), and Zheng Wan-Guo(郑万国) . Chin. Phys. B, 2012, 21(4): 044212.
[15] Formation energies and electronic structures of native point defects in potassium dihydrogen phosphate
Wang Kun-Peng(王坤鹏) and Huang Ye(黄烨) . Chin. Phys. B, 2011, 20(7): 077401.
No Suggested Reading articles found!