Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020504    DOI: 10.1088/1674-1056/ab65b4
GENERAL Prev   Next  

Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator

Hong-Bo Yan(闫洪波)1, Hong Gao(高鸿)1, Gao-Wei Yang(杨高炜)1, Hong-Bo Hao(郝宏波)2, Yu Niu(牛禹)1, Pei Liu(刘霈)1
1 College of Mechanical Engineering, Inner Mongolia University of Science&Technology, Baotou 014010, China;
2 Baotou Research Institute of Rare Earths, State Key Laboratory of Bayan Obo Rare Earth Resource Researches and Comprehensive Utilization, Baotou 014030, China
Abstract  Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator (GMA). Therefore, in the present study we intend to investigate the influences of the system damping coefficient, system stiffness coefficient, disc spring cubic stiffness factor, and the excitation force and frequency on the output stability and the hysteresis vibration of the GMA. In this regard, the nonlinear piezomagnetic equation, Jiles-Atherton hysteresis model, quadratic domain rotation model, and the GMA structural dynamics are used to establish the mathematical model of the hysteresis vibration system of the GMA. Moreover, the multi-scale method and the singularity theory are used to determine the co-dimensional two-bifurcation characteristics of the system. Then, the output response of the system is simulated to determine the variation range of each parameter when chaos is imposed. Finally, the fourth-order Runge-Kutta method is used to obtain the time domain waveform, phase portrait and Poincaré mapping diagrams of the system. Subsequently, the obtained three graphs are analyzed. The obtained results show that when the system output is stable, the variation range of each parameter can be determined. Moreover, the stability interval of system damping coefficient, system stiffness coefficient, and the coefficient of the cubic stiffness term of the disc spring are obtained. Furthermore, the stability interval of the exciting force and the excitation frequency are determined.
Keywords:  giant magnetostrictive actuator (GMA)      nonlinear hysteresis      bifurcation      chaos  
Received:  12 September 2019      Revised:  18 December 2019      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant No. 2017M010660) and the Major Project of the Inner Mongolia Autonomous Region, China (Grant No. 2018ZD10).
Corresponding Authors:  Hong Gao     E-mail:  1147254245@qq.com

Cite this article: 

Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈) Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator 2020 Chin. Phys. B 29 020504

[1] Li Y S, Zhu Y C, Wu H T, Niu S Y and Tian Y S 2018 Int. J. Appl. Electromagnet. Mech. 57 439
[2] Yang Z S, He Z B, Yang F B, Rong C and Cui X H 2018 Int. J. Appl. Electromagnet. Mech. 57 439
[3] Zhu Y and Li Y 2014 Smart Mater. Structures. 23 115001
[4] Braghin F, Cinquemani S and Resta F 2012 Sens. Actuators A: Physical. 180 67
[5] Yang Y, Yang B and Niu M 2018 Nonlinear Dyn. 92 1109
[6] Ting Z, Bin T Y, Hong G L and Guang M 2013 Sens. Actuators A: Physical. 190 96
[7] Kotaro M, Tadashi H and Shigekazu I 2018 Materials 11 581
[8] Fang Z W, Zhang Y W, Li X, Ding H, Chen L Q 2017 J. Sound Vibration 391 35
[9] Yan B, Zhang C and Li L 2017 Smart Mater. Structures 26 05LT02
[10] Xue G M, Zhang P L, He Z B, Li B and Rong C 2017 Smart Mater. Structures 26 05LT02
[11] Xue G M, Zhang P L, He Z B, Li D W, Huang Y J and Zhang L 2019 Sens. Actuators A: Physical 287 150
[12] Liu H F, Zhao J J, Wang W G, Yang G Z and Gao Z J 2016 Chin. J. Sens. & Actuators 29 1797
[13] Zhou J T, He Z B, Rong C and Xue G M 2019 Sens. Actuators A: Physical 287 150
[14] Xue G M, Zhang P L, He Z B, Li D W, Yang Z S and Zhao Z L 2016 Mater. & Design. 95 501
[15] Liu Y G, Gao X H and Li Y L 2016 Sens. Actuators A: Physical 250 7
[16] Gao X H and Liu Y G 2018 Nonlinear Dyn. 92 793
[17] Xue G M, Zhang P L, Li X Y, He Z B, Wang H G, Li Y N, Rong C, Zeng W and Li B 2018 Sens. Actuators A: Physical 273 159
[18] Nealis J M and Smith R C 2003 Proc. SPIE. 221
[19] Han F, Wang Z J, Fan H and Gong T 2015 Chin. Phys. Lett. 32 040502
[20] Wang L, Tan J B and Liu Y T 2005 J. Phys.: Conf. Ser. 13 446
[21] Oates W S, Smith R C and Smith R C 2016 Smart Mater. Structures 25 085036
[22] Liu P, Mao J Q, Liu Q S and Zhou K M 2013 Control Theory & Applications 30 148
[23] Zhou H M, Li M H, Li X H and Zhang D G 2016 Smart Mater. Structures 25 085036
[24] Tan X B and Baras J S 2004 Autom. 40 1469
[25] Zhu Y C, Yang X L and Wereley N M 2016 Smart Mater. Structures 25 085030
[26] Liu H F, Wang H Y, Wang J and Shan G K 2016 Opt. Precision Engineering 24 1128
[27] Zeng H Q, Leng J and Asundi A K 2015 Chin. Phys. Lett. 32 050501
[28] Liu B, Hu W P, Zou X, Ding Y J and Qian S Y 2019 Acta Phys. Sin. 68 028702 (in Chinese)
[29] He J H and Sun C 2019 J. Math. Chem. 57 01063
[30] He J H 2019 Int. J. Numer. Methods Heat Fluid Flow
[31] He J H 2019 Int. J. Numer. Methods Heat Fluid Flow
[32] Li L L and Xue C X 2019 Acta Phys. Sin. 68 010501 (in Chinese)
[33] Peng R R 2019 Appl. Math. Mech. 40 1122
[34] Zhang Q F, Huang C Q, Yao J, Li Y and Yan X 2019 Acta Phys. Sin. 68 164 (in Chinese)
[35] Xia G H, Fang F, Chen T and Wang J G 2019 Chin. J. Appl. Mech.
[36] Wu L M and Cao S Q 2019 J. Mech. Eng. 55 92
[37] Zeng H Q 2009 Trans. Chin. Soc. For Agricultural Machinery 40 185
[38] Sun H G, Yuan H Q, He W and Li D 2007 Chin. J. Appl. Mech. 24 486
[39] Yuan H Q, Li H, Zhou S W and Bang C 2002 J. Northeastern University (Natural Science) 404–409
[40] Liu B, Zhao H X, Hou D X and Liu H R 2014 Acta Phys. Sin. 63 074501 (in Chinese)
[41] Ogunjo S T and Fuwape I A 2019 arXiv preprint arXiv: 08584
[42] Liu B, Zhao H X and Hou D X 2014 Acta Phys. Sin. 63 174502 (in Chinese)
[43] Ji Q B, Zhou Y, Yang Z Q and Meng X Y 2015 Chin. Phys. Lett. 32 050501
[44] Cao B F, Li P, Li X Q, Zhang X Q, Ning W S, Liang R, Li X, Hu M and Zheng Y 2019 Chin. Phys. B 28 040201
[45] Shi L J and Wen Z S 2019 Chin. Phys. B 28 040201
[46] Chen J Y, Min F H, Jin Q S and Ye B M 2019 Chin. Phys. B 28 020503
[47] Alamodi O A, Sun K H, Ai W, Chen C and Peng D 2019 Chin. Phys. B 28 020503
[48] Yu X C, Ren Z Z and Zhang X 2019 Chin. Phys. B 28 020504
[49] Cao S Y, Wang B W, Yan R G, Huang W M and Wen L 2007 IEEE Trans. Magn. 43 3467
[50] Anderson P I, Moses A J, Stanbury H J and Standury H J 2007 IEEE Trans. Magn. 43 3467
[51] Jiles D C and Atherton D L 1984 J. Appl. Phys. 55 2115
[52] Hamimid M, Mimoune S M and Feliachi M 2017 Int. J. Numer. Modell.: Electronic Networks, Devices and Fields 30 e2225
[53] Ren Z F, Yao S W and He J H 2019 J. Low Freq. Noise Vib. Active Control 38 1708
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[6] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[9] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[10] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[11] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[12] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[13] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
No Suggested Reading articles found!