|
|
Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers |
Di Zhang(张迪)1, Yu-Qing Li(李玉清)1,2, Yun-Fei Wang(王云飞)1, Yong-Ming Fu(付永明)1, Peng Li(李鹏)1, Wen-Liang Liu(刘文良)1,2, Ji-Zhou Wu(武寄洲)1,2, Jie Ma(马杰)1,2, Lian-Tuan Xiao(肖连团)1,2, Suo-Tang Jia(贾锁堂)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We report a detailed study of the enhanced optical molasses cooling of Cs atoms, whose large hyperfine structure allows to use the largely red-detuned cooling lasers. We find that the combination of a large frequency detuning of about -110 MHz for the cooling laser and a suitable control for the powers of the cooling and repumping lasers allows to reach a cold temperature of ~5.5 μK. We obtain 5.1×107 atoms with the number density around 1×1012 cm-3. Our result gains a lower temperature than that got in other experiments, in which the cold Cs atoms with the temperature of ~10 μK have been achieved by the optical molasses cooling.
|
Received: 11 October 2019
Revised: 29 November 2019
Accepted manuscript online:
|
PACS:
|
32.10.Fn
|
(Fine and hyperfine structure)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
|
37.10.De
|
(Atom cooling methods)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61722507, 61675121, and 61705123), PCSIRT (Grant No. IRT17R70), the 111 Project (Grant No. D18001), the Shanxi 1331 KSC, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT), the Applied Basic Research Project of Shanxi Province, China (Grant No. 201701D221002), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics. |
Corresponding Authors:
Yu-Qing Li
E-mail: lyqing.2006@163.com
|
Cite this article:
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂) Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers 2020 Chin. Phys. B 29 023203
|
[1] |
Makotyn P, Klauss C E, Goldberger D L, Cornell E A and Jin D S 2014 Nat. Phys. 10 116
|
[2] |
Eigen C, Glidden J A P, Lopes R, Cornell E A, Smith R P and Hadzibabic Z 2018 Nature 563 221
|
[3] |
Lin Y J, Jiménez-García K and Spielman I B 2014 Nature 471 83
|
[4] |
Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
|
[5] |
Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
|
[6] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[7] |
Parker C V, Ha L C and Chin C 2013 Nat. Phys. 9 769
|
[8] |
Eckardt A 2017 Rev. Mod. Phys. 89 011004
|
[9] |
Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404
|
[10] |
Jiang J, Zhao L, Webb M, Jiang N, Yang H and Liu Y 2013 Phys. Rev. A 88 033620
|
[11] |
Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
|
[12] |
Kraemer T, Herbig J, Mark M, Weber T, Chin C, Nägerl H C and Grimm R 2004 Appl. Phys. B 79 1013
|
[13] |
Hung C L, Zhang X B, Gemelke N and Chin C 2008 Phys. Rev. A 78 011604
|
[14] |
Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631
|
[15] |
Jenkina D L, McCarron D J, Koppinger M P, Cho H W, Höpkins S A and Cornish S L 2011 Eur. Phys. J. D 65 11
|
[16] |
Wang P J, Xiong D Z, Fu Z K and Zhang J 2011 Chin. Phys. B 20 016701
|
[17] |
Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
|
[18] |
Dalibard J and Cohen-Tannoudj C 1989 J. Opt. Soc. Am. B 11 2023
|
[19] |
Weiss D S, Riis E, Shevy Y, Ungar P J and Chu S 1989 J. Opt. Soc. Am. B 11 2072
|
[20] |
Landini M, Roy S, Carcagní L, Trypogeorgos D, Fattori M, Inguscio M and Modugno G 2011 Phys. Rev. A 84 043432
|
[21] |
Gokhroo V, Rajalakshmi G, Easwaran R K and Unnikrishnan C S 2011 J. Phys. B 44 115307
|
[22] |
Satter C L, Tan S and Dieckmann K 2018 Phys. Rev. A 98 023422
|
[23] |
Kim K, Huh S J, Kwon K and Choi J Y 2019 Phys. Rev. A 99 053604
|
[24] |
Salomon G, Fouché L, Lepoutre S, Aspect A and Bourdel T 2014 Phys. Rev. A 90 033405
|
[25] |
Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M and Roati G 2014 Phys. Rev. A 90 043408
|
[26] |
Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C and Chevy F 2015 Phys. Rev. A 91 023426
|
[27] |
Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H and Zhang J 2018 Chin. Phys. Lett. 35 123701
|
[28] |
Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G and Ferrari G 2016 Phys. Rev. A 93 023421
|
[29] |
Nath D, Easwaran R K, Rajalakshmi G and Unnikrishnan C S 2013 Phys. Rev. A 88 053407
|
[30] |
Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W and Kuhr S 2017 J. Phys. B 50 095002
|
[31] |
Chen H Z, Yao X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Chen Y A and Pan J W 2016 Phys. Rev. A 94 033408
|
[32] |
Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C and Minardi F 2018 Sci. Rep. 8 1301
|
[33] |
Hsiao Y F, Lin Y J and Chen Y C 2018 Phys. Rev. A 98 033419
|
[34] |
Kerman A J, Vuletić V, Chin C and Chu S 2000 Phys. Rev. Lett. 84 439
|
[35] |
Treutlein P, Chung K Y and Chu S 2001 Phys. Rev. A 63 051401
|
[36] |
Gröbner M, Weinmann P, Kirilov E and Nägerl H C 2017 Phys. Rev. A 95 033412
|
[37] |
Hu J Z, Urvoy A, Vendeiro Z, Crépel V, Chen W L and Vuletić V 2017 Science 358 1078
|
[38] |
Solano P, Duan Y H, Chen Y T, Rudelis A, Chin C and Vuletić V 2019 Phys. Rev. Lett. 123 173401
|
[39] |
Tierney P 2009 "Magnetic trapping of an ultracold (87)Rb-(133)Cs atomic mixture", Ph. D. dissertation (Durham: Durham University)
|
[40] |
Landini M, Roy S, Roati G, Simoni A, Inguscio M, Modugno G and Fattori M 2012 Phys. Rev. A 86 033421
|
[41] |
Han D J, Wolf S, Oliver S, McCormick C, DePue M T and Weiss D S 2000 Phys. Rev. Lett. 85 724
|
[42] |
Smirne G 2005 "Experiments with Bose-Einstein Condensates in Optical Traps" Ph. D. dissertation (Oxford: University of Oxford)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|