Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 023203    DOI: 10.1088/1674-1056/ab5fc6
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers

Di Zhang(张迪)1, Yu-Qing Li(李玉清)1,2, Yun-Fei Wang(王云飞)1, Yong-Ming Fu(付永明)1, Peng Li(李鹏)1, Wen-Liang Liu(刘文良)1,2, Ji-Zhou Wu(武寄洲)1,2, Jie Ma(马杰)1,2, Lian-Tuan Xiao(肖连团)1,2, Suo-Tang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We report a detailed study of the enhanced optical molasses cooling of Cs atoms, whose large hyperfine structure allows to use the largely red-detuned cooling lasers. We find that the combination of a large frequency detuning of about -110 MHz for the cooling laser and a suitable control for the powers of the cooling and repumping lasers allows to reach a cold temperature of ~5.5 μK. We obtain 5.1×107 atoms with the number density around 1×1012 cm-3. Our result gains a lower temperature than that got in other experiments, in which the cold Cs atoms with the temperature of ~10 μK have been achieved by the optical molasses cooling.
Keywords:  optical molasses      frequency detuning      magneto-optical trap      laser cooling  
Received:  11 October 2019      Revised:  29 November 2019      Accepted manuscript online: 
PACS:  32.10.Fn (Fine and hyperfine structure)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  37.10.-x (Atom, molecule, and ion cooling methods)  
  37.10.De (Atom cooling methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61722507, 61675121, and 61705123), PCSIRT (Grant No. IRT17R70), the 111 Project (Grant No. D18001), the Shanxi 1331 KSC, the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT), the Applied Basic Research Project of Shanxi Province, China (Grant No. 201701D221002), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics.
Corresponding Authors:  Yu-Qing Li     E-mail:  lyqing.2006@163.com

Cite this article: 

Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂) Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers 2020 Chin. Phys. B 29 023203

[1] Makotyn P, Klauss C E, Goldberger D L, Cornell E A and Jin D S 2014 Nat. Phys. 10 116
[2] Eigen C, Glidden J A P, Lopes R, Cornell E A, Smith R P and Hadzibabic Z 2018 Nature 563 221
[3] Lin Y J, Jiménez-García K and Spielman I B 2014 Nature 471 83
[4] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[5] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[6] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[7] Parker C V, Ha L C and Chin C 2013 Nat. Phys. 9 769
[8] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[9] Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404
[10] Jiang J, Zhao L, Webb M, Jiang N, Yang H and Liu Y 2013 Phys. Rev. A 88 033620
[11] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[12] Kraemer T, Herbig J, Mark M, Weber T, Chin C, Nägerl H C and Grimm R 2004 Appl. Phys. B 79 1013
[13] Hung C L, Zhang X B, Gemelke N and Chin C 2008 Phys. Rev. A 78 011604
[14] Lin Y J, Perry A R, Compton R L, Spielman I B and Porto J V 2009 Phys. Rev. A 79 063631
[15] Jenkina D L, McCarron D J, Koppinger M P, Cho H W, Höpkins S A and Cornish S L 2011 Eur. Phys. J. D 65 11
[16] Wang P J, Xiong D Z, Fu Z K and Zhang J 2011 Chin. Phys. B 20 016701
[17] Raab E L, Prentiss M, Cable A, Chu S and Pritchard D E 1987 Phys. Rev. Lett. 59 2631
[18] Dalibard J and Cohen-Tannoudj C 1989 J. Opt. Soc. Am. B 11 2023
[19] Weiss D S, Riis E, Shevy Y, Ungar P J and Chu S 1989 J. Opt. Soc. Am. B 11 2072
[20] Landini M, Roy S, Carcagní L, Trypogeorgos D, Fattori M, Inguscio M and Modugno G 2011 Phys. Rev. A 84 043432
[21] Gokhroo V, Rajalakshmi G, Easwaran R K and Unnikrishnan C S 2011 J. Phys. B 44 115307
[22] Satter C L, Tan S and Dieckmann K 2018 Phys. Rev. A 98 023422
[23] Kim K, Huh S J, Kwon K and Choi J Y 2019 Phys. Rev. A 99 053604
[24] Salomon G, Fouché L, Lepoutre S, Aspect A and Bourdel T 2014 Phys. Rev. A 90 033405
[25] Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M and Roati G 2014 Phys. Rev. A 90 043408
[26] Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C and Chevy F 2015 Phys. Rev. A 91 023426
[27] Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H and Zhang J 2018 Chin. Phys. Lett. 35 123701
[28] Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G and Ferrari G 2016 Phys. Rev. A 93 023421
[29] Nath D, Easwaran R K, Rajalakshmi G and Unnikrishnan C S 2013 Phys. Rev. A 88 053407
[30] Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W and Kuhr S 2017 J. Phys. B 50 095002
[31] Chen H Z, Yao X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Chen Y A and Pan J W 2016 Phys. Rev. A 94 033408
[32] Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C and Minardi F 2018 Sci. Rep. 8 1301
[33] Hsiao Y F, Lin Y J and Chen Y C 2018 Phys. Rev. A 98 033419
[34] Kerman A J, Vuletić V, Chin C and Chu S 2000 Phys. Rev. Lett. 84 439
[35] Treutlein P, Chung K Y and Chu S 2001 Phys. Rev. A 63 051401
[36] Gröbner M, Weinmann P, Kirilov E and Nägerl H C 2017 Phys. Rev. A 95 033412
[37] Hu J Z, Urvoy A, Vendeiro Z, Crépel V, Chen W L and Vuletić V 2017 Science 358 1078
[38] Solano P, Duan Y H, Chen Y T, Rudelis A, Chin C and Vuletić V 2019 Phys. Rev. Lett. 123 173401
[39] Tierney P 2009 "Magnetic trapping of an ultracold (87)Rb-(133)Cs atomic mixture", Ph. D. dissertation (Durham: Durham University)
[40] Landini M, Roy S, Roati G, Simoni A, Inguscio M, Modugno G and Fattori M 2012 Phys. Rev. A 86 033421
[41] Han D J, Wolf S, Oliver S, McCormick C, DePue M T and Weiss D S 2000 Phys. Rev. Lett. 85 724
[42] Smirne G 2005 "Experiments with Bose-Einstein Condensates in Optical Traps" Ph. D. dissertation (Oxford: University of Oxford)
[1] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[2] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[3] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[4] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[5] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[6] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[7] Laser cooling of CH molecule: Insights from ab initio study
Jie Cui(崔洁), Jian-Gang Xu(徐建刚), Jian-Xia Qi(祁建霞), Ge Dou(窦戈), Yun-Guang Zhang(张云光). Chin. Phys. B, 2018, 27(10): 103101.
[8] Quantum feedback cooling of two trapped ions
Shuo Zhang(张硕), Wei Wu(吴伟), Chun-Wang Wu(吴春旺), Feng-Guang Li(李风光), Tan Li(李坦), Xiang Wang(汪翔), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2017, 26(7): 074205.
[9] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[10] BaF radical: A promising candidate for laser cooling and magneto-optical trapping
Liang Xu(许亮), Bin Wei(魏斌), Yong Xia(夏勇), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2017, 26(3): 033702.
[11] Tuning the velocity and flux of a low-velocity intense source of cold atomic beam
Shu Chen(陈姝), Ying-Ying Li(李营营), Xue-Shu Yan(颜学术), Hong-Bo Xue(薛洪波), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2017, 26(11): 113703.
[12] Automatic compensation of magnetic field for a rubidium space cold atom clock
Lin Li(李琳), Jingwei Ji(吉经纬), Wei Ren(任伟), Xin Zhao(赵鑫), Xiangkai Peng(彭向凯), Jingfeng Xiang(项静峰), Desheng Lü(吕德胜), Liang Liu(刘亮). Chin. Phys. B, 2016, 25(7): 073201.
[13] Intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing
Jia-Qiang Huang(黄家强), Xue-Shu Yan(颜学术), Chen-Fei Wu(吴晨菲), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2016, 25(6): 063701.
[14] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[15] Ab initio study on the electronic states and laser cooling of AlCl and AlBr
Rong Yang(杨荣), Bin Tang(唐斌), Tao Gao(高涛). Chin. Phys. B, 2016, 25(4): 043101.
No Suggested Reading articles found!