|
|
Comparative study on atomic ionization in bicircular laser fields by length and velocity gauges S-matrix theory |
Hong Xia(夏宏)1, Xin-Yan Jia(贾欣燕)1, Xiao-Lei Hao(郝小雷)2, Li Guo(郭丽)3, Dai-He Fan(樊代和)1, Gen-Bai Chu(储根柏)4, Jing Chen(陈京)5,6 |
1 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China; 2 Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China; 3 State Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 4 Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China; 5 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China; 6 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges. We show that for both the bicircular fields, ionization rates are enhanced when the two circularly polarized lights have comparable intensities. In addition, the curves of ionization rate versus the field amplitude ratio of the two colors for counter-rotating and co-rotating fields coincide with each other in the length gauge case at the total laser intensity 5×1014 W/cm2, which agrees with the experimental observation. Moreover, the degree of the coincidence between the ionization rate curves of the two bicircular fields decreases with the increasing field amplitude ratio and decreasing total laser intensity. With the help of the ADK theory, the above characteristics of the ionization rate curves can be well interpreted, which is related to the transition from the tunneling to multiphoton ionization mechanism.
|
Received: 09 November 2019
Revised: 09 December 2019
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the Key Laboratory Project of Computational Physics of National Defense Science and Technology of China (Grant No. 6142A05180401), the National Key Program for S&T Research and Development of China (Grant Nos. 2019YFA0307700 and 2016YFA0401100), and the National Natural Science Foundation of China (Grant Nos. 11847307, 11425414, 11504215, 11774361, and 11874246). |
Corresponding Authors:
Xin-Yan Jia, Jing Chen
E-mail: xyjia@swjtu.edu.cn;chen_jing@iapcm.ac.cn
|
Cite this article:
Hong Xia(夏宏), Xin-Yan Jia(贾欣燕), Xiao-Lei Hao(郝小雷), Li Guo(郭丽), Dai-He Fan(樊代和), Gen-Bai Chu(储根柏), Jing Chen(陈京) Comparative study on atomic ionization in bicircular laser fields by length and velocity gauges S-matrix theory 2020 Chin. Phys. B 29 023204
|
[1] |
Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
|
[2] |
Paulus G G, Nicklich W, Xu H, Lambropoulos P and Walther H 1994 Phys. Rev. Lett. 72 2851
|
[3] |
Lai X Y, Wang C L, Chen Y J, Hu Z L, Quan W, Chen J, Cheng Y, Xu Z Z and Becker W 2013 Phys. Rev. Lett. 110 043002
|
[4] |
Zhang K, Liu M, Wang B B, Guo C Y, Yan Z C, Chen J and Liu X J 2017 Chin. Phys. Lett. 34 113201
|
[5] |
Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227
|
[6] |
Larochelle S, Talebpour A and Chin S L 1998 J. Phys. B 31 1201
|
[7] |
Mcpherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
|
[8] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[9] |
Schafer K J, Yang B R, DiMauro L F and Kulander K C 1993 Phys. Rev. Lett. 70 1599
|
[10] |
Ben S, Wang T, Xu T, Guo J and Liu X 2016 Opt. Express 24 7525
|
[11] |
Gillen G D, Walker M A and Woerkom L D V 2001 Phys. Rev. A 64 043413
|
[12] |
Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M and Cohen O 2015 Nat. Photon. 9 99
|
[13] |
Fan T, Grychtol P, Knut R, Hernández-García C, Hickstein D D, Zusin D, Gentry C, Dollar F J, Mancuso C A, Hogle C, Kfir O, Legut D, Carva K, Ellis J L, Dorney K, Chen C, Shpyrko O, Fullerton E E, Cohen O, Oppeneer P M, Milošević D B, Becker A, Jaroń-Becker A A, Popmintchev T, Murnane M M and Kapteyn H C 2015 Proc. Natl. Acad. Sci. USA 112 14206
|
[14] |
Xia C L, Lan Y Y, Li Q Q and Miao X Y 2019 Chin. Phys. B 28 103203
|
[15] |
Mancuso C A, Hickstein D D, Grychtol P, Knut R, Kfir O, Tong X M, Dollar F, Zusin D, Gopalakrishnan M, Gentry C, Turgut E, Ellis J L, Chen M C, Fleischer A, Cohen O, Kapteyn H C and Murnane M M 2015 Phys. Rev. A 91 031402
|
[16] |
Huang Y, Qin C C, Zhang Y Z, Wang X C, Yan T M and Jiang Y H 2019 Chin. Phys. B 28 093202
|
[17] |
Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt L P H, Schöffler M, Jahnke T and Dörner R 2016 Phys. Rev. Lett. 117 133202
|
[18] |
Mancuso C A, Dorney K M, Hickstein D D, Chaloupka J L, Ellis J L, Dollar F J, Knut R, Grychtol P, Zusin D, Gentry C, Gopalakrishnan M, Kapteyn H C and Murnane M M 2016 Phys. Rev. Lett. 117 133201
|
[19] |
Han M, Ge P, Shao Y, Gong Q and Liu Y 2018 Phys. Rev. Lett. 120 073202
|
[20] |
Ge P, Han M, Deng Y, Gong Q and Liu Y 2019 Phys. Rev. Lett. 122 013201
|
[21] |
Kulander K C 1987 Phys. Rev. A 35 445(R)
|
[22] |
Hu S L, Liu M Q, Shu Z and Chen J 2019 Phys. Rev. A 100 053414
|
[23] |
Xu L and Fu L B 2019 Chin. Phys. Lett. 36 043202
|
[24] |
Corkum P B and Krausz F 2007 Nat. Phys. 3 381
|
[25] |
Chen J, Liu J, Fu L B and Zheng W M 2000 Phys. Rev. A 63 011404(R)
|
[26] |
Keldysh L V 1964 Zh. Eksp. Teor. Fiz. 47 1515
|
[27] |
Faisal F H M 2007 Phys. Rev. A 75 063412
|
[28] |
Reiss H R 1980 Phys. Rev. A 22 1786
|
[29] |
Burlon R, Leone C, Trombetta F and Ferrante G 1987 Nuovo Cimento D 9 1033
|
[30] |
Bauer D, Milošević D B and Becker W 2005 Phys. Rev. A 72 023415
|
[31] |
Gazibegovic-Busuladzic A, Milošević D B and Becker W 2007 Opt. Commun. 275 116
|
[32] |
Chen J and Chen S G 2007 Phys. Rev. A 75 041402(R)
|
[33] |
Becker W, Chen J, Chen S G and Milošević D B 2007 Phys. Rev. A 76 033403
|
[34] |
Leone C, Bivona S, Burlon R, Morales F and Ferrante G 1989 Phys. Rev. A 40 1828
|
[35] |
Lin K, Jia X Y, Yu Z Q, He F, Ma J Y, Li H, Gong X C, Song Q Y, Ji Q Y, Zhang W B, Li H X, Lu P F, Zeng H P, Chen J and Wu J 2017 Phys. Rev. Lett. 119 203202
|
[36] |
Delone N B and Krainov V P 1998 Phys. Usp. 41 469
|
[37] |
Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
|
[38] |
Delone N B and Krainov V P J. Opt. Soc. Am. B 8 1207
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|