|
|
Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact |
Zhi-Ping Wang(王志萍)1, Feng-Shou Zhang(张丰收)2, Xue-Fen Xu(许雪芬)1, Chao-Yi Qian(钱超义)1 |
1 Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China; 2 The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China |
|
|
Abstract Using a real-space real-time implementation of time-dependent density functional theory coupled to molecular dynamics (TDDFT-MD) nonadiabatically, we theoretically study both static properties and collision process of cytosine by 150-1000 eV proton impact in the microscopic way. The calculated ground state of cytosine accords well with experiments. It is found that proton is scattered in any case in the present study. The bond break of cytosine occurs when the energy loss of proton is larger than 22 eV and the main dissociation pathway of cytosine is the breaks of C1N2 and N8H10. In the range of 150 eV≤Ek≤360 eV, when the incident energy of proton increases, the excitation becomes more violent even though the interaction time is shortened. While in the range of 360 eV < Ek ≤q 1000 eV, the excitation becomes less violent as the incident energy of proton increases, indicating that the interaction time dominates mainly. We also show two typical collision reaction channels by analyzing the molecular ionization, the electronic density evolution, the energy loss of proton, the vibration frequency and the scattering pattern detailedly. The result shows that the loss of electrons can decrease the bond lengths of C3N8 and C5N6 while increase the bond lengths of C4H11, C5H12 and C4C5 after the collision. Furthermore, it is found that the peak of the scattering angle shows a little redshift when compared to that of the loss of kinetic energy of proton.
|
Received: 07 October 2019
Revised: 12 December 2019
Accepted manuscript online:
|
PACS:
|
34.50.Gb
|
(Electronic excitation and ionization of molecules)
|
|
82.30.Fi
|
(Ion-molecule, ion-ion, and charge-transfer reactions)
|
|
87.15.H-
|
(Dynamics of biomolecules)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905160 and 11635003) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20160199). |
Corresponding Authors:
Zhi-Ping Wang
E-mail: zpwang03247@163.com
|
Cite this article:
Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义) Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact 2020 Chin. Phys. B 29 023401
|
[1] |
Von Sonntag C 2006 Free-Radical-Induced DNA Damage and Its Repair (Berlin: Springer)
|
[2] |
Baccarelli I, Gianturco F A, Scifoni E, Solov'yov A V and Surdutovich E 2010 Eur. Phys. J. D 60 1
|
[3] |
Michael B D and O'Neill P 2000 Science 287 1603
|
[4] |
Gonzalgo M L and Jones P A 1997 Mutation Res.-Rev. Mutation Res. 386 107
|
[5] |
Shikazono N, Noguchi M, Fujii K, Urushibara A and Yokoya A 2009 J. Radiat. Res. 50 27
|
[6] |
Poully J C, Miles J, De Camillis S, Cassimi A and Greenwood J B 2015 Phys. Chem. Chem. Phys. 17 7172
|
[7] |
Plekan O, Feyer V, Richter R, Coreno M, de Simone M and Prince K C 2007 Chem. Phys. 334 53
|
[8] |
Touboul D, Gaie-Levrel F, Garcia G A, Nahon L, Poisson L and Schwell M 2013 J. Chem. Phys. 138 094203
|
[9] |
Tabet J, Eden S, Feil S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S and Märk T D 2010 Phys. Rev. A 82 022703
|
[10] |
Chen L, Bredy R, Bernard J, Montagne G, Allouche A R and Martin S 2011 J. Chem. Phys. 135 114309
|
[11] |
Brédy R, Bernard J, Chen L, Wei B, Salmoun A, Bouchama T, Buchet-Poulizac M C and Martin S 2005 Nucl. Instrum. Methods. Phys. Res. Sect. B 235 392
|
[12] |
Seraide R, Bernal M A, Brunetto G, De Giovannini U and Rubio A 2017 J. Phys. Chem. B 121 7276
|
[13] |
Das T and Ghosh D 2014 J. Phys. Chem. A 118 5323
|
[14] |
Dal Cappello C, Hervieux P A, Charpentier I and Ruiz-Lopez F 2008 Phys. Rev. A 78 042702
|
[15] |
Sadr-Arani L, Mignon P, Chermette H, Abdoul-Carime H, Farizon B and Farizon M 2015 Phys. Chem. Chem. Phys. 17 11813
|
[16] |
Chen Z Y, Lau K C, Garcia G A, Nahon L, Božanić D K, Poisson L, Al-Mogren M M, Schwell M, Francisco J S, Bellili A and Hochlaf M 2016 J. Am. Chem. Soc. 138 16596
|
[17] |
Trofimov A B, Schirmer J, Kobychev V B, Potts A W, Holland D M P and Karlssons L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 305
|
[18] |
Le Padellec A, Moretto-Capelle P, Richard-Viard M, Champeaux J P and Cafarelli P 2008 J. Phys.: Conf. Ser. 101 012007
|
[19] |
Rice J M, Dudek G O and Barder M 1965 J. Am. Chem. Soc. 87 4569
|
[20] |
Wolken J K, Yao C X, Tureček F, Polce M J and Wesdemiotis C 2007 Int. J. Mass Spectrom. 267 30
|
[21] |
See http://pw-teleman.org/ for the information about the TDDFT-MD model.
|
[22] |
Calvayrac F, Reinhard P G, Suraud E and Ullrich C A 2000 Phys. Rep. 337 493
|
[23] |
Fennel Th, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M and Suraud E 2010 Rev. Mod. Phys. 82 1793
|
[24] |
Dinh P M, Reinhard P G and Suraud E 2010 Phys. Rep. 485 43
|
[25] |
Zhao R T, Zhang N and Zhang F S 2018 Mol. Phys. 116 231
|
[26] |
Yu W, Gao C Z, Zhang Y, Zhang F S, Hutton R, Zou Y and Wei B 2018 Phys. Rev. A 97 032706
|
[27] |
Hong X H, Wang F, Wu Y, Gou B C and Wang J G 2016 Phys. Rev. A 93 062706
|
[28] |
Wang Z P, Dinh P M, Reinhard P G, Suraud E, Bruny G, Montano C, Feil S, Eden S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S and Märk T D 2009 Int. J. Mass. Spectrom. 285 143
|
[29] |
Krasheninnikov A V, Miyamoto Y and Tománek D 2007 Phys. Rev. Lett. 99 016104
|
[30] |
Miyamoto Y and Zhang H 2008 Phys. Rev. B 77 165123
|
[31] |
Wang Z P, Dinh P M, Reinhard P G, Suraud E and Zhang F S 2011 Int. J. Quantum. Chem. 111 480
|
[32] |
Ndongmouo-Taffoti U F, Dinh P M, Reinhard P G, Suraud E and Wang Z P 2010 Eur. Phys. J. D 58 131
|
[33] |
Gaigeot M P, Lopez-Tarifa P, Martin F, Alcami M, Vuilleumier R, Tavernelli I, Hervé du Penhoat M A and Politis M F 2010 Mutation Res.-Rev. Mutation Res. 704 45
|
[34] |
Marques M A L and Gross E K U 2004 Annu. Rev. Phys. Chem. 55 427
|
[35] |
Goedecker S, Teter M and J Hutter 1996 Phys. Rev. B 54 1703
|
[36] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[37] |
Legrand C, Suraud E and Reinhard P G 2002 J. Phys. B 35 1115
|
[38] |
Ullrich C A 2000 J. Mol. Struct. (THEOCHEM) 501-502 315
|
[39] |
Gao C Z, Wang J, Wang F and Zhang F S 2014 J. Chem. Phys. 140 054308
|
[40] |
Barker D L and Marsh R E 1964 Acta Cryst. 17 1581
|
[41] |
Improta R, Scalmani G and Barone V 2000 Int. J. Mass. Spectrom. 201 321
|
[42] |
Hush N S and Cheung A S 1975 Chem. Phys. Lett. 34 11
|
[43] |
Tehrani Z A, Javan M J, Fattahi A and Hashemi M M 2012 J. Theor. Comput. Chem. 11 313
|
[44] |
Radchenko E D, Sheina G G, Smorygo N A and Blagoi Yu P 1984 J. Mol. Struct. 116 387
|
[45] |
Susi H, Ard J S and Purcell J M 1973 Spectrochim. Acta 29A 725
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|