Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 023401    DOI: 10.1088/1674-1056/ab6313
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact

Zhi-Ping Wang(王志萍)1, Feng-Shou Zhang(张丰收)2, Xue-Fen Xu(许雪芬)1, Chao-Yi Qian(钱超义)1
1 Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China;
2 The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  Using a real-space real-time implementation of time-dependent density functional theory coupled to molecular dynamics (TDDFT-MD) nonadiabatically, we theoretically study both static properties and collision process of cytosine by 150-1000 eV proton impact in the microscopic way. The calculated ground state of cytosine accords well with experiments. It is found that proton is scattered in any case in the present study. The bond break of cytosine occurs when the energy loss of proton is larger than 22 eV and the main dissociation pathway of cytosine is the breaks of C1N2 and N8H10. In the range of 150 eV≤Ek≤360 eV, when the incident energy of proton increases, the excitation becomes more violent even though the interaction time is shortened. While in the range of 360 eV < Ek ≤q 1000 eV, the excitation becomes less violent as the incident energy of proton increases, indicating that the interaction time dominates mainly. We also show two typical collision reaction channels by analyzing the molecular ionization, the electronic density evolution, the energy loss of proton, the vibration frequency and the scattering pattern detailedly. The result shows that the loss of electrons can decrease the bond lengths of C3N8 and C5N6 while increase the bond lengths of C4H11, C5H12 and C4C5 after the collision. Furthermore, it is found that the peak of the scattering angle shows a little redshift when compared to that of the loss of kinetic energy of proton.
Keywords:  time-dependent density functional theory      cytosine      collision      proton  
Received:  07 October 2019      Revised:  12 December 2019      Accepted manuscript online: 
PACS:  34.50.Gb (Electronic excitation and ionization of molecules)  
  82.30.Fi (Ion-molecule, ion-ion, and charge-transfer reactions)  
  87.15.H- (Dynamics of biomolecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905160 and 11635003) and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20160199).
Corresponding Authors:  Zhi-Ping Wang     E-mail:  zpwang03247@163.com

Cite this article: 

Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义) Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact 2020 Chin. Phys. B 29 023401

[1] Von Sonntag C 2006 Free-Radical-Induced DNA Damage and Its Repair (Berlin: Springer)
[2] Baccarelli I, Gianturco F A, Scifoni E, Solov'yov A V and Surdutovich E 2010 Eur. Phys. J. D 60 1
[3] Michael B D and O'Neill P 2000 Science 287 1603
[4] Gonzalgo M L and Jones P A 1997 Mutation Res.-Rev. Mutation Res. 386 107
[5] Shikazono N, Noguchi M, Fujii K, Urushibara A and Yokoya A 2009 J. Radiat. Res. 50 27
[6] Poully J C, Miles J, De Camillis S, Cassimi A and Greenwood J B 2015 Phys. Chem. Chem. Phys. 17 7172
[7] Plekan O, Feyer V, Richter R, Coreno M, de Simone M and Prince K C 2007 Chem. Phys. 334 53
[8] Touboul D, Gaie-Levrel F, Garcia G A, Nahon L, Poisson L and Schwell M 2013 J. Chem. Phys. 138 094203
[9] Tabet J, Eden S, Feil S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S and Märk T D 2010 Phys. Rev. A 82 022703
[10] Chen L, Bredy R, Bernard J, Montagne G, Allouche A R and Martin S 2011 J. Chem. Phys. 135 114309
[11] Brédy R, Bernard J, Chen L, Wei B, Salmoun A, Bouchama T, Buchet-Poulizac M C and Martin S 2005 Nucl. Instrum. Methods. Phys. Res. Sect. B 235 392
[12] Seraide R, Bernal M A, Brunetto G, De Giovannini U and Rubio A 2017 J. Phys. Chem. B 121 7276
[13] Das T and Ghosh D 2014 J. Phys. Chem. A 118 5323
[14] Dal Cappello C, Hervieux P A, Charpentier I and Ruiz-Lopez F 2008 Phys. Rev. A 78 042702
[15] Sadr-Arani L, Mignon P, Chermette H, Abdoul-Carime H, Farizon B and Farizon M 2015 Phys. Chem. Chem. Phys. 17 11813
[16] Chen Z Y, Lau K C, Garcia G A, Nahon L, Božanić D K, Poisson L, Al-Mogren M M, Schwell M, Francisco J S, Bellili A and Hochlaf M 2016 J. Am. Chem. Soc. 138 16596
[17] Trofimov A B, Schirmer J, Kobychev V B, Potts A W, Holland D M P and Karlssons L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 305
[18] Le Padellec A, Moretto-Capelle P, Richard-Viard M, Champeaux J P and Cafarelli P 2008 J. Phys.: Conf. Ser. 101 012007
[19] Rice J M, Dudek G O and Barder M 1965 J. Am. Chem. Soc. 87 4569
[20] Wolken J K, Yao C X, Tureček F, Polce M J and Wesdemiotis C 2007 Int. J. Mass Spectrom. 267 30
[21] See http://pw-teleman.org/ for the information about the TDDFT-MD model.
[22] Calvayrac F, Reinhard P G, Suraud E and Ullrich C A 2000 Phys. Rep. 337 493
[23] Fennel Th, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M and Suraud E 2010 Rev. Mod. Phys. 82 1793
[24] Dinh P M, Reinhard P G and Suraud E 2010 Phys. Rep. 485 43
[25] Zhao R T, Zhang N and Zhang F S 2018 Mol. Phys. 116 231
[26] Yu W, Gao C Z, Zhang Y, Zhang F S, Hutton R, Zou Y and Wei B 2018 Phys. Rev. A 97 032706
[27] Hong X H, Wang F, Wu Y, Gou B C and Wang J G 2016 Phys. Rev. A 93 062706
[28] Wang Z P, Dinh P M, Reinhard P G, Suraud E, Bruny G, Montano C, Feil S, Eden S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S and Märk T D 2009 Int. J. Mass. Spectrom. 285 143
[29] Krasheninnikov A V, Miyamoto Y and Tománek D 2007 Phys. Rev. Lett. 99 016104
[30] Miyamoto Y and Zhang H 2008 Phys. Rev. B 77 165123
[31] Wang Z P, Dinh P M, Reinhard P G, Suraud E and Zhang F S 2011 Int. J. Quantum. Chem. 111 480
[32] Ndongmouo-Taffoti U F, Dinh P M, Reinhard P G, Suraud E and Wang Z P 2010 Eur. Phys. J. D 58 131
[33] Gaigeot M P, Lopez-Tarifa P, Martin F, Alcami M, Vuilleumier R, Tavernelli I, Hervé du Penhoat M A and Politis M F 2010 Mutation Res.-Rev. Mutation Res. 704 45
[34] Marques M A L and Gross E K U 2004 Annu. Rev. Phys. Chem. 55 427
[35] Goedecker S, Teter M and J Hutter 1996 Phys. Rev. B 54 1703
[36] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[37] Legrand C, Suraud E and Reinhard P G 2002 J. Phys. B 35 1115
[38] Ullrich C A 2000 J. Mol. Struct. (THEOCHEM) 501-502 315
[39] Gao C Z, Wang J, Wang F and Zhang F S 2014 J. Chem. Phys. 140 054308
[40] Barker D L and Marsh R E 1964 Acta Cryst. 17 1581
[41] Improta R, Scalmani G and Barone V 2000 Int. J. Mass. Spectrom. 201 321
[42] Hush N S and Cheung A S 1975 Chem. Phys. Lett. 34 11
[43] Tehrani Z A, Javan M J, Fattahi A and Hashemi M M 2012 J. Theor. Comput. Chem. 11 313
[44] Radchenko E D, Sheina G G, Smorygo N A and Blagoi Yu P 1984 J. Mol. Struct. 116 387
[45] Susi H, Ard J S and Purcell J M 1973 Spectrochim. Acta 29A 725
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[4] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[5] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[8] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[9] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[10] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[11] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[12] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[13] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[14] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[15] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
No Suggested Reading articles found!