Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 125205    DOI: 10.1088/1674-1056/ab55ce
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Characteristics of non-thermal AC arcs in multi-arc generator

Qifu Lin(林启富)1,2, Yanjun Zhao(赵彦君)1,2, Wenxue Duan(段文学)1, Guohua Ni(倪国华)1,3, Xinyue Jin(靳兴月)1,2,3, Siyuan Sui(隋思源)1,2, Hongbing Xie(谢洪兵)1, Yuedong Meng(孟月东)1
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 AnHui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, China
Abstract  To obtain large-volume non-thermal arc plasma (NTAP), a multiple NTAP generator with three pairs of electrodes has been developed. The arc plasma characteristics, including dynamic process, spatial distribution, and rotation velocity in the discharge zone, were investigated by high speed photograph and image processing methods. The results showed that the dynamic behaviors and spatial distribution of the arc plasma were strongly related to the electrode configuration. A swirl flow of multi-arc plasma was formed by adjusting the electrode configuration, and a steady luminance area was clearly observed in the center of the discharge zone. Moreover, the size of the luminance area increased by decreasing the gas flow rate. The electrical connection in series could be formed between/among these arc columns with their respective driving power supplies in the multi-arc dynamic evolution process. An approximately periodical process of acceleration and deceleration of the arc rotation velocity was observed in the multi-arc generator with swirl flow configuration. In general, the mean velocity of arc rotation was higher in the multi-arc generator with swirl flow configuration when a pair of electrodes driven by a power supply were opposite to each other rather than adjacent.
Keywords:  characteristics      multiple arc plasma      multi-arc generator      non-thermal arc  
Received:  05 August 2019      Revised:  06 November 2019      Accepted manuscript online: 
PACS:  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.50.Dg (Plasma sources)  
  52.30.-q (Plasma dynamics and flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875295 and 11535003), Provincial Science and Technology Major Project of Anhui Province, China (Grant No. 17030801035), and Key Program of 13th Five-year Plan, CASHIPS, China (Grant No. KP-2017-25).
Corresponding Authors:  Guohua Ni     E-mail:  ghni@ipp.ac.cn

Cite this article: 

Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xinyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), Yuedong Meng(孟月东) Characteristics of non-thermal AC arcs in multi-arc generator 2019 Chin. Phys. B 28 125205

[1] Gangoli S P, Gutsol A F and Fridman A A 2010 Plasma Sources Sci. Technol. 19 065004
[2] Gangoli S P, Gutsol A F and Fridman A A 2010 Plasma Sources Sci. Technol. 19 065003
[3] Liu J L, Park H W, Chung W J and Park D W 2016 Plasma Chem. Plasma P. 36 437
[4] Lin Q F, Ni G H, Guo Q J, Wu W W, Li L, Zhao P, Xie H B and Meng Y D 2018 IEEE. T. Plasma Sci. 46 2528
[5] Lu N, Sun D F, Xia Y, Shang K F, Wang B, Jiang N, Li J and Wu Y 2018 Int. J. Hydrogen Energ. 43 13098
[6] Xia Y, Lu N, Wang B, Li J, Shang K F, Jiang N and Wu Y 2017 Int. J. Hydrogen Energ. 42 22776
[7] Zhang H, Zhu F, Li X, Xu R, Li L, Yan J and Tu X 2019 J. Hazard. Mater. 369 244
[8] Wu W W, Ni G H, Lin Q F, Guo Q J and Meng Y D 2015 IEEE. T. Plasma Sci. 43 3979
[9] Wu W W, Ni G H, Guo Q J, Zhao P, Li L and Meng Y D 2016 IEEE. T. Plasma Sci. 44 2952
[10] Larsson A, Adelow L, Elfsberg M and Hurtig T 2014 IEEE. T. Plasma Sci. 42 3186
[11] Feng R, Li J, Wu Y, Zhu J J, Song X L and Li X P 2018 Aerosp. Sci. Technol. 79 145
[12] Djakaou I S, Ghezzar R M, Zekri M E M, Abdelmalek F, Cavadias S and Ognier S 2015 Plasma Chem. Plasma P. 35 143
[13] Krishna S, Maslani A, Izdebski T, Horakova M, Klementova S and Spatenka P 2016 Chemosphere 152 47
[14] Feng Z B, Saeki N, Kuroki T, Tahara M and Okubo M 2012 Appl. Phys. Lett. 101 041602
[15] Kusano Y, Sorensen B F, Andersen T L and Leipold F 2013 J. Adhesion. 89 433
[16] Kusano Y, Sorensen B F, Andersen T L, Toftegaard H L, Leipold F, Salewski M, Sun Z, Zhu J, Li Z and Alden M 2013 J. Phys. D: Appl. Phys. 46 135203
[17] Kusano Y, Zhu J J, Ehn A, Li Z S, Alden M, Salewski M, Leipold F, Bardenshtein A and Krebs N 2015 Surf. Eng. 31 282
[18] Chaudhary K T, Ali J and Yupapin P P 2014 Chin. Phys. B 23 035203
[19] Wang C, Lu Z S, Li D N, Xia W L and Xia W D 2018 Plasma Chem. Plasma P. 38 1223
[20] Zhu F S, Zhang H, Li X D, Wu A J, Yan J H, Ni M J and Tu X 2018 J. Phys. D: Appl. Phys. 51 105202
[21] Baba T, Takeuchi Y, Stryczewska H D and Aoqui S I 2012 Przeglad Elektrotechniczny 88 86
[22] Zhu J J, Gao J L, Li Z S, Ehn A, Aldén M, Larsson A and Kusano Y 2014 Appl. Phys. Lett. 105 234102
[23] Kong C D, Gao J L, Zhu J J, Ehn A, Aldén M and Li Z S 2017 Phys. Plasmas. 24 093515
[24] Zhu J J, Gao J L, Ehn A, Aldén M, Larsson A, Kusano Y and Li Z S 2017 Phys. Plasmas. 24 013514
[25] Xia W L, Wang C, Xia W D, Guo W K and Li C (C. N. Patent) 105682334 B [2018-11-20]
[26] Liu Y, Tanaka M, Choi S and Watanabe T 2014 Int. J. Appl. Glass Sci. 5 443
[27] Yao Y, Yatsuda K, Watanabe T, Matsuura T and Yano T 2009 Plasma Chem. Plasma P. 29 333
[28] Pellerin S, Cormier J M, Richard F, Musiol K and Chapelle J 1996 J. Phys. D: Appl. Phys. 29 726
[29] Workman J M, Fleitz P A, Fannin H B, Caruso J A and Seliskar C J 1988 Appl. Spectrosc. 42 96
[30] Chumak O, Kavka T and Hrabovsky M 2008 IEEE. T. Plasma Sci. 36 1062
[31] Takana H, Jang J Y, Igawa J J, Nakajima T, Solonenko O P and Nishiyama H 2011 J. Therm. Spray. Techn. 20 432
[32] Zhu J J, Gao J L, Ehn A, Alden M, Li Z, Moseev D, Kusano Y, Salewski M, Alpers A, Gritzmann P and Schwenk M 2015 Appl. Phys. Lett. 106 044101
[33] McNall M and Coulombe S 2018 J. Phys. D: Appl. Phys. 51 445203
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[4] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[5] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[6] Experimental study of the influence of annular nozzle on acoustic characteristics of detonation sound wave generated by pulse detonation engine
Yang Kang(康杨), Ning Li(李宁), Xiao-Long Huang(黄孝龙), and Chun-Sheng Weng(翁春生). Chin. Phys. B, 2022, 31(10): 104701.
[7] Experimental study on age and gender differences in microscopic movement characteristics of students
Jiayue Wang(王嘉悦), Maik Boltes, Armin Seyfried, Antoine Tordeux, Jun Zhang(张俊), and Wenguo Weng(翁文国). Chin. Phys. B, 2021, 30(9): 098902.
[8] Investigation of hypersonic flows through a cavity with sweepback angle in near space using the DSMC method
Guangming Guo(郭广明), Hao Chen(陈浩), Lin Zhu(朱林), and Yixiang Bian(边义祥). Chin. Phys. B, 2021, 30(7): 074701.
[9] A new algorithm based on C-V characteristics to extract the epitaxy layer parameters for power devices with the consideration of termination
Jiupeng Wu(吴九鹏), Na Ren(任娜), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(4): 048505.
[10] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[11] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[12] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[13] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[14] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[15] Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure
Lu-Wei Qi(祁路伟), Xiao-Yu Liu(刘晓宇), Jin Meng(孟进), De-Hai Zhang(张德海), Jing-Tao Zhou(周静涛). Chin. Phys. B, 2020, 29(5): 057306.
No Suggested Reading articles found!