Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 125204    DOI: 10.1088/1674-1056/ab55d1
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Estimation of plasma equilibrium parameters via a neural network approach

Zi-Jian Zhu(朱子健)1,2, Yong Guo(郭勇)2, Fei Yang(杨飞)3, Bing-Jia Xiao(肖炳甲)1,2, Jian-Gang Li(李建刚)1,2
1 Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China;
2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
3 Department of Medical Information Engineering, Anhui Medical University, Hefei 230026, China
Abstract  Plasma equilibrium parameters such as position, X-point, internal inductance, and poloidal beta are essential information for efficient and safe operation of tokamak. In this work, the artificial neural network is used to establish a non-linear relationship between the measured diagnostic signals and selected equilibrium parameters. The estimation process is split into a preliminary classification of the kind of equilibrium (limiter or divertor) and subsequent inference of the equilibrium parameters. The training and testing datasets are generated by the tokamak simulation code (TSC), which has been benchmarked with the EAST experimental data. The noise immunity of the inference model is tested. Adding noise to model inputs during training process is proved to have a certain ability for maintaining performance.
Keywords:  neural network      fusion      plasma equilibrium      noise immunity  
Received:  25 August 2019      Revised:  22 October 2019      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.25.Xz (Magnetized plasmas)  
Fund: Project supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Grant No. 2018YFE0302100), the National Key Research and Development Program of China (Grant Nos. 2017YFE0300500 and 2017YFE0300501), the National Natural Science Foundation of China (Grant Nos. 11575245, 11805236, and 11905256), and Young and Middle-aged Academic Back-bone Finance Fund from Anhui Medical University.
Corresponding Authors:  Fei Yang     E-mail:  yangfei@ahmu.edu.cn

Cite this article: 

Zi-Jian Zhu(朱子健), Yong Guo(郭勇), Fei Yang(杨飞), Bing-Jia Xiao(肖炳甲), Jian-Gang Li(李建刚) Estimation of plasma equilibrium parameters via a neural network approach 2019 Chin. Phys. B 28 125204

[1] Feneberg W, Lackner K and Martin P 1984 Comput. Phys. Commun. 31 143
[2] Swain D and Neilson G 1982 Nucl. Fusion 22 1015
[3] Hofmann F and Tonetti G 1988 Nucl. Fusion 28 519
[4] Huang Y, Xiao B J and Luo Z P 2017 Chin. Phys. B 26 085204
[5] Calcagno S, Greco A, Morabito F C and Versaci M 2006 The 2006 IEEE International Joint Conference on Neural Network Proceedings Vancouver, BC, pp. 835-842
[6] Matsukawa M, Hosogane N and Ninomiya H 1992 Plasma. Phys. Contr. F 34 907
[7] Coccorese E, Morabito C and Martone R 1994 Nucl. Fusion 34 1349
[8] Lister J B and Schnurrenberger H 1991 Nucl. Fusion 31 1291
[9] Rosenblatt F 1958 Psychol. Rev. 65 386
[10] Rumelhart D E, Hinton G E and Williams R J 1986 Nature 323 533
[11] Guo Y, Xiao B, Wu B and Liu C 2012 Plasma. Phys. Contr. F 54 085022
[12] Guo Y, Xiao B J, Liu L, Yang F, Wang Y H and Qiu Q L 2016 Chin. Phys. B 25 115201
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[4] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[5] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[6] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[7] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[8] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[9] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[10] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[11] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[12] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[13] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[14] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[15] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
No Suggested Reading articles found!