Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 127402    DOI: 10.1088/1674-1056/ab5211
RAPID COMMUNICATION Prev   Next  

Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation

Guang Yang(杨光)1,2, Zhaozheng Lyu(吕昭征)1,2, Xiang Zhang(张祥)1,2, Fanming Qu(屈凡明)1,3,4, Li Lu(吕力)1,2,3,4,5
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China;
5 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  Recently, a contact-resistance-measurement method was developed to detect the minigap, hence the Andreev bound states (ABSs), in Josephson junctions constructed on the surface of three-dimensional topological insulators (3D TIs). In this work, we further generalize that method to the circumstance with radio frequency (rf) irradiation. We find that with the increase of the rf power, the measured minigap becomes broadened and extends to higher energies in a way similar to the rf power dependence of the outer border of the Shapiro step region. We show that the corresponding data of contact resistance under rf irradiation can be well interpreted by using the resistively shunted Josephson junction (RSJ) model and the Blonder-Tinkham-Klapwijk (BTK) theory. Our findings could be useful when using the contact-resistance-measurement method to study the Majorana-related physics in topological insulator-based Josephson junctions under rf irradiation.
Keywords:  topological insulator      Josephson junction      contact-resistance-measurement method      radio frequency irradiation  
Received:  11 August 2019      Revised:  30 September 2019      Accepted manuscript online: 
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  85.25.Cp (Josephson devices)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0300601, 2017YFA0304700, and 2015CB921402), the National Natural Science Foundation China (Grant Nos. 11527806, 91221203, 11174357, 91421303, and 11774405), and the Strategic Priority Research Program B of the Chinese Academy of Sciences (Grant Nos. XDB07010100 and XDB28000000), and the Beijing Municipal Science & Technology Commission, China (Grant No. Z191100007219008).
Corresponding Authors:  Fanming Qu, Li Lu     E-mail:  fanmingqu@iphy.ac.cn;lilu@iphy.ac.cn

Cite this article: 

Guang Yang(杨光), Zhaozheng Lyu(吕昭征), Xiang Zhang(张祥), Fanming Qu(屈凡明), Li Lu(吕力) Probing the minigap in topological insulator-based Josephson junctions under radio frequency irradiation 2019 Chin. Phys. B 28 127402

[1] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[2] Sochnikov I, Maier L, Watson C A, Kirtley J R, Gould C, Tkachov G, Hankiewicz E M, Brüne C, Buhmann H, Molenkamp L W and Moler K A 2015 Phys. Rev. Lett. 114 066801
[3] Kurter C, Finck A D K, Hor Y S and Van Harlingen D J 2015 Nat. Commun. 6 7130
[4] Kayyalha M, Kazakov A, Miotkowski I, Khlebnikov S, Rokhinson L P and Chen Y P 2018 arXiv:1812.00499
[5] Rokhinson L P, Liu X and Furdyna J K 2012 Nat Phys. 8 795
[6] Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Oiwa A, Ishibashi K, Tarucha S, Buhmann H and Molenkamp L W 2016 Nat. Commun. 7 10303
[7] Bocquillon E, Deacon R S, Wiedenmann J, Leubner P, Klapwijk T M, Brune C, Ishibashi K, Buhmann H and Molenkamp L W 2017 Nat. Nanotechnol. 12 137
[8] Le Calvez K, Veyrat L, Gay F, Plaindoux P, Winkelmann C B, Courtois H and Sacépé B 2019 Commun. Phys. 2 4
[9] Pang Y, Wang J, Lyu Z, Yang G, Fan J, Liu G, Ji Z, Jing X, Yang C and Lu L 2016 Chin. Phys. B 25 117402
[10] Lyu Z, Pang Y, Wang J, Yang G, Fan J, Liu G, Ji Z, Jing X, Yang C, Qu F and Lu L 2018 Phys. Rev. B 98 155403
[11] Yang G, Lyu Z, Wang J, Ying J, Zhang X, Shen J, Liu G, Fan J, Ji Z, Jing X, Qu F and Lu L 2019 arXiv:1904.02677
[12] Barone A and Paterno G 1982 Physics and Application of the Josephson Effect (New York: John Wiley and Sons) p. 122
[13] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[14] Domínguez F, Kashuba O, Bocquillon E, Wiedenmann J, Deacon R S, Klapwijk T M, Platero G, Molenkamp L W, Trauzettel B and Hankiewicz E M 2017 Phys. Rev. B 95 195430
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[3] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[4] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[5] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[6] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[7] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[8] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[9] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[10] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[11] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[12] Quench dynamics in 1D model with 3rd-nearest-neighbor hoppings
Shuai Yue(岳帅), Xiang-Fa Zhou(周祥发), and Zheng-Wei Zhou(周正威). Chin. Phys. B, 2021, 30(2): 026402.
[13] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[14] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[15] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
No Suggested Reading articles found!