CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electrocaloric effect and pyroelectric properties of organic-inorganic hybrid (C2H5NH3)2CuCl4 |
Yi Liu(刘义)1,3, Yan-Fen Chang(畅艳芬)2, Young Sun(孙阳)2, Jun Shen(沈俊)3, Li-Qin Yan(闫丽琴)2, Zun-Ming Lu(卢遵铭)1 |
1 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The organic-inorganic hybrid (C2H5NH3)2CuCl4 (EA2CuCl4) single crystals are prepared by the solvothermal condition method. The x-ray diffraction, scanning electron microscopy, dielectric permittivity, pyroelectric current, and heat capacity are used to systematically investigate the electrocaloric performances of EA2CuCl4. The pyroelectric currents are measured under various voltages, and the electrocaloric effect (ECE) is calculated. Its ECE exhibits an isothermal entropy change of 0.0028 J/kg·K under an electric field of 30 kV/cm associated with a relatively broad temperature span. Further, the maximum pyroelectric coefficient (p) is 4×10-3 C/m2·K and the coefficient β for generating ECE from electric displacement D is 1.068×108 J·cm·K-1·C-2 at 240 K. Our results indicate that the ECE behavior of organic-inorganic hybrid EA2CuCl4 is in accordance with Jona and Shirane's opinion in which the ECE should occur both below and above the Curie temperature Tc.
|
Received: 25 March 2019
Revised: 09 September 2019
Accepted manuscript online:
|
PACS:
|
77.70.+a
|
(Pyroelectric and electrocaloric effects)
|
|
77.55.-g
|
(Dielectric thin films)
|
|
81.07.Pr
|
(Organic-inorganic hybrid nanostructures)
|
|
Fund: Project supported by the Fujian Institute of Innovation, Chinese Academy of Sciences (Grant No. FJCXY18040303), the Youth Innovation Promotion of the Chinese Academy of Sciences (Grant No. 2013004), and the National Natural Science Foundation of China (Grant Nos. 51676198 and 51771067). |
Corresponding Authors:
Li-Qin Yan, Zun-Ming Lu
E-mail: lqyan@iphy.ac.cn;luzunming@hebut.edu.cn
|
Cite this article:
Yi Liu(刘义), Yan-Fen Chang(畅艳芬), Young Sun(孙阳), Jun Shen(沈俊), Li-Qin Yan(闫丽琴), Zun-Ming Lu(卢遵铭) Electrocaloric effect and pyroelectric properties of organic-inorganic hybrid (C2H5NH3)2CuCl4 2019 Chin. Phys. B 28 117701
|
[35] |
Ploss B, Shin F G, Chan H L and Choy C 2000 Appl. Phys. Lett. 76 2776
|
[1] |
Zhang G, Zhang X, Huang H, Wang J, Li Q, Chen L Q and Wang Q 2016 Adv. Mater. 28 4811
|
[36] |
Ploss B, Shin F G, Chan H L and Choy C 2000 IEEE Trans. Dielectr. Electr. Insul. 7 517
|
[37] |
Jang H and Jun Y 1997 Ferroelectrics 193 125
|
[2] |
Akcay G, Alpay S P and Mantese J V 2007 Appl. Phys. Lett. 90 252909
|
[38] |
Chan W H, Xu Z, Zhai J and Chen H 2005 Appl. Phys. Lett. 87 192904
|
[3] |
Neese B, Chu B, Lu S G, Wang Y, Furman E and Zhang M 2008 Science 321 821
|
[39] |
Zhang H, Chen X, Cao F, Wang G, Dong X, Gu Y and Liu Y 2009 Appl. Phys. Lett. 94 252902
|
[4] |
Misirlioglu I B, Alpay S P, Aindow M and Nagarajan V 2006 Appl. Phys. Lett. 88 102906
|
[40] |
Lu S G, Rožič B, Zhang Q M, Kutnjak Z, Li X, Furman E, Gorny L J, Lin M, Malič B, Kosec M, Blinc R and Pirc R 2010 Appl. Phys. Lett. 97 162904
|
[5] |
Zhang J, Alpay S P and Rossetti G A 2011 Appl. Phys. Lett. 98 132907
|
[41] |
Lu S G and Zhang Q 2009 Adv. Mater. 21 1983
|
[6] |
Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
|
[7] |
Sternberg A, Birks E, Shebanovs L, Klotins E, Ozolinsh M, Tyunina M, Zauls V and Kundzinsh M 1999 Ferroelectrics 226 217
|
[8] |
Olsen R D, Butler W F, Payne D A, Tuttle B A, Held P C 1980 Phys. Rev. Lett. 45 1436
|
[9] |
Li M D, Tang X G, Zeng S M, Liu Q X, Jiang Y P and Li W H 2018 J. Alloys Compd. 747 1053
|
[10] |
Li M D, Tang X G, Zeng S M, Liu Q X, Jiang Y P, Zhang T F and Li W H 2018 ACS Sustainable Chem. Eng. 6 8920
|
[11] |
Correia T and Zhang Q 2014 Eng. Mater. 34 183
|
[12] |
Rǒzič B, Malič B, Uršič H, Holc J, Kosec M, Neese B, Zhang Q M and Kutnjak Z 2010 Ferroelectrics 405 26
|
[13] |
Flerov I N, Mikhaleva E A 2008 Phys. Solid State 50 478
|
[14] |
Scott J F 2011 Annu. Rev. Mater. Res. 41 229
|
[15] |
Fatuzzo E and Merz W J 1967 Ferroelectricity (Amsterdam: NorthHolland)
|
[16] |
Mitsui T, Tatsuzaki I and Nakamura E 1976 Introduction to the physics of ferroelectricity (London: Gordon and Breach)
|
[17] |
Jona F and Shirane G 1962 Ferroelectric crystals (NY: McMillan)
|
[18] |
Scott J F 1989 J. Phys. Soc. Jpn. 58 4487
|
[19] |
Meyerhofer D 1958 Phys. Rev. 112 413
|
[20] |
Li B, Ren W J, Wang X W, Meng H, Liu X G, Wang Z J and Zhang Z D 2010 Appl. Phys. Lett. 96 102903
|
[21] |
Li B, Wang J B, Zhong X L, Wang F and Zhou Y C 2010 J. Appl. Phys. 107 014109
|
[22] |
Ma Y, Zhai K, Yan L, Chai Y, Shang D and Sun Y 2018 Chin. Phys. B 27 027501
|
[23] |
Dong Q, Fang Y, Shao Y, Mulligan P and Qiu J 2015 Science 347 967
|
[24] |
Han J, Nishihara S, Inoue K and Kurmoo M 2015 Inorg. Chem. 54 2866
|
[25] |
Kundys B, Lappas A, Viret M, Kapustianyk V, Rudyk V, Semak S, Simon C and Bakaimi I 2010 Phys. Rev. B 81 224434
|
[26] |
Jahn I R, Knorr K and Ihringer J 1989 J. Phys.:Condens. Matter 1 6005
|
[27] |
Kapustianyk V, Rudyk V and Partyka M 2007 Phys. Status Solidi B 244 2151
|
[28] |
Steadman J P and Willett R D 1970 Inorg. Chim. Acta 4 367
|
[29] |
Kapustianik V, Korchak Yu, Polovinko I, Tchukvinskyi R, Czapla Z and Dacko S 1998 Phys. Stat. Sol. (b) 207 95
|
[30] |
Chapuis G, Kind R and Arend H 1976 Phys. Status Solidi A 36 285
|
[31] |
Depmeier W, Felsche J and Wildermut G 1977 J. Solid State Chem. 21 57
|
[32] |
Kapustianik V, Korchak Yu, Sveleba S, Tchukvinskyi R and Girnyk I 1999 Acta Phys. Poloica A 95 351
|
[33] |
Not published
|
[34] |
Whatmore R W and Watton R 1986 Rep. Prog. Phys. 49 1335
|
[35] |
Ploss B, Shin F G, Chan H L and Choy C 2000 Appl. Phys. Lett. 76 2776
|
[36] |
Ploss B, Shin F G, Chan H L and Choy C 2000 IEEE Trans. Dielectr. Electr. Insul. 7 517
|
[37] |
Jang H and Jun Y 1997 Ferroelectrics 193 125
|
[38] |
Chan W H, Xu Z, Zhai J and Chen H 2005 Appl. Phys. Lett. 87 192904
|
[39] |
Zhang H, Chen X, Cao F, Wang G, Dong X, Gu Y and Liu Y 2009 Appl. Phys. Lett. 94 252902
|
[40] |
Lu S G, Rožič B, Zhang Q M, Kutnjak Z, Li X, Furman E, Gorny L J, Lin M, Malič B, Kosec M, Blinc R and Pirc R 2010 Appl. Phys. Lett. 97 162904
|
[41] |
Lu S G and Zhang Q 2009 Adv. Mater. 21 1983
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|