Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 117701    DOI: 10.1088/1674-1056/26/11/117701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

On the parameters for electrocaloric effect predicted by indirect method

Hong-Bo Liu(刘宏波)
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
Abstract  The influences of specific heat capacity CP, temperature step △T, electric field step △ E, and initial electric field E1 on predicted electrocaloric (EC) temperature △ T of monodomain BaTiO3 are examined by combining the Maxwell equation and phenomenological theory. Since the procedure is similar to indirect measurement of the EC effect, the results can serve as a reference for experiments. The results suggest that (i) it is reasonable to use zero-field CP, (ii) optimized △ T should be 2 K, (iii) it is better to keep △ E<EC, and (iv) E1<EC. Here, EC is the coercive field of material.
Keywords:  electrocaloric effect      indirect method      BaTiO3  
Received:  29 June 2017      Revised:  05 August 2017      Accepted manuscript online: 
PACS:  77.70.+a (Pyroelectric and electrocaloric effects)  
Fund: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1447200).
Corresponding Authors:  Hong-Bo Liu     E-mail:  bohongliu@gmail.com

Cite this article: 

Hong-Bo Liu(刘宏波) On the parameters for electrocaloric effect predicted by indirect method 2017 Chin. Phys. B 26 117701

[1] Mischenko A, Zhang Q, Scott J, Whatmore R and Mathur N 2006 Science 311 1270
[2] Neese B, Chu B, Lu S G, Wang Y, Furman E and Zhang Q 2008 Science 321 821
[3] Kar-Narayan S and Mathur N D 2009 Appl. Phys. Lett. 95 242903
[4] Epstein R I and Malloy K J 2009 J. Appl. Phys. 106 064509
[5] Jia Y and Sungtaek Ju Y 2012 Appl. Phys. Lett. 100 242901
[6] Gu H, Qian X, Li X, Craven B, Zhu W, Cheng A, Yao S C and Zhang Q M 2013 Appl. Phys. Lett. 102 122904
[7] Plaznik U, Kitanovski A, Rožič B, Malič B, Uršič H, Drnovšek S, Cilenšek J, Vrabelj M, Poredoš A and Kutnjak Z 2015 Appl. Phys. Lett. 106 043903
[8] Wang Y D, Smullin S J, Sheridan M J, Wang Q, Eldershaw C and Schwartz D E 2015 Appl. Phys. Lett. 107 134103
[9] Blumenthal P, Molin C, Gebhardt S and Raatz A 2016 Ferroelectrics 497 1
[10] Sette D, Asseman A, Gérard M, Strozyk H, Faye R and Defay E 2016 APL Mater. 4 091101
[11] Liu Y, Scott J F and Dkhil B 2016 APL Mater. 4 064109
[12] Liu Y, Scott J F and Dkhil B 2016 Appl. Phys. Rev. 3 031102
[13] Wang X Y, Chu R J, Wei S N, Dong Z C, Zhong C G, Cao H X, Sciences S O and University N 2015 Acta Phys. Sin. 64 117701(in Chinese)
[14] Pelaiz-Barranco A, Wang J and Yang T 2016 Ceram. Int. 42 229
[15] Le Goupil F, Berenov A, Axelsson A K, Valant M and Alford N M 2012 J. Appl. Phys. 111 124109
[16] Kar-Narayan S and Mathur N 2010 J. Phys. Appl. Phys. 43 032002
[17] Kaddoussi H, Lahmar A, Gagou Y, Asbani B, Dellis J L, Cordoyiannis G, Allouche B, Khemakhem H, Kutnjak Z and El Marssi M 2016 J. Alloy. Compd. 667 198
[18] Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar-Narayan S, Planes A, Mañosa L and Mathur N D 2013 Adv. Mater. 25 1360
[19] Liu H and Yang X 2015 AIP Adv. 5 117134
[20] Akcay G, Alpay S P, Mantese J V and Rossetti G A 2007 Appl. Phys. Lett. 90 2909
[21] Wang Y L, Tagantsev A K, Damjanovic D, Setter N, Yarmarkin V K, Sokolov A I and Lukyanchuk I A 2007 J. Appl. Phys. 101 104115
[22] Merz W J 1953 Phys. Rev. 91 513
[23] Pertsev N, Zembilgotov A and Tagantsev A 1998 Phys. Rev. Lett. 80 1988
[24] Bell A and Cross L 1984 Ferroelectrics 59 197
[25] Lines M E and Glass A M 1977(Oxford:Oxford University Press) p. 67
[26] Ma Y B, Novak N, Koruza J, Yang T, Albe K and Xu B X 2016 Phys. Rev. B 94 100104
[27] Ma Y B, Novak N, Albe K and Xu B X 2016 Appl. Phys. Lett. 109 242903
[28] Novak N, Kutnjak Z and Pirc R 2013 Europhys. Lett. 103 47001
[29] Bai Y, Ding K, Zheng G P, Shi S Q and Qiao L 2012 Phys. Status Solidi A 209 941
[30] Bai Y, Han X, Zheng X C and Qiao L 2013 Sci. Rep. 3 2895
[31] Qian X S, Ye H J, Zhang Y T, Gu H, Li X, Randall C and Zhang Q 2014 Adv. Funct. Mater. 24 1300
[1] Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure
Hongbo Liu(刘宏波). Chin. Phys. B, 2020, 29(8): 087701.
[2] Electrocaloric effect and pyroelectric properties of organic-inorganic hybrid (C2H5NH3)2CuCl4
Yi Liu(刘义), Yan-Fen Chang(畅艳芬), Young Sun(孙阳), Jun Shen(沈俊), Li-Qin Yan(闫丽琴), Zun-Ming Lu(卢遵铭). Chin. Phys. B, 2019, 28(11): 117701.
[3] Effect of an electric field on the electrocaloric response of ferroelectrics
Hongbo Liu(刘宏波). Chin. Phys. B, 2018, 27(12): 127701.
[4] Strongly enhanced flux pinning in the YBa2Cu3O7-X films with the co-doping of BaTiO3 nanorod and Y2O3 nanoparticles at 65 K
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾). Chin. Phys. B, 2015, 24(9): 097401.
[5] Two-dimensional metallic behavior at polar MgO/BaTiO3 (110) interfaces
Du Yan-Ling (杜颜伶), Wang Chun-Lei (王春雷), Li Ji-Chao (李吉超), Zhang Xin-Hua (张新华), Wang Fu-Ning (王芙凝), Liu Jian (刘剑), Zhu Yuan-Hu (祝元虎), Yin Na (尹娜), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(3): 037301.
[6] Dimension effects on the dielectric properties of fine BaTiO3 ceramics
Hou Zhi-Wen (侯志文), Kang Ai-Guo (康爱国), Ma Wei-Qing (马维清), Zhao Xiao-Long (赵晓龙). Chin. Phys. B, 2014, 23(11): 117701.
[7] Precursor evolution and growth mechanism of BTO/YBCO films by TFA-MOD process
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Peng Xing-Yu (彭星煜). Chin. Phys. B, 2014, 23(10): 107402.
[8] Strong flux pinning enhancement in YBa2Cu3O7-x films by embedded BaZrO3 and BaTiO3 nanoparticles
Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Wang Hong-Yan (王洪艳), Qu Fei (屈飞), Qiu Qing-Quan (邱清泉), Dai Shao-Tao (戴少涛), Peng Xing-Yu (彭星煜). Chin. Phys. B, 2013, 22(7): 077401.
[9] Composition and misfit strain dependence of electrocaloric effect of Pb1-xSrxTiO3 thin films
Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴). Chin. Phys. B, 2013, 22(1): 017701.
[10] Effect of misfit strain on the electrocaloric effect of polydomain epitaxial ferroelectric thin films
Qiu Jian-Hua (邱建华), Ding Jian-Ning (丁建宁), Yuan Ning-Yi (袁宁一), Wang Xiu-Qin (王秀琴). Chin. Phys. B, 2012, 21(9): 097701.
[11] Fabrication and optical properties of InGaN/GaN multiple quantum well light emitting diodes with amorphous BaTiO3 ferroelectric film
Peng Jing(彭静), Wu Chuan-Ju(吴传菊), Shen Tang-You(孙堂友), Zhao Wen-Ning(赵文宁), Wu Xiao-Feng(吴小锋), Liu Wen(刘文) Wang Shuang-Bao(王双保), Jie Quan-Lin(揭泉林), and Xu Zhi-Mou(徐智谋) . Chin. Phys. B, 2012, 21(6): 067702.
[12] Determination of elastic, piezoelectric, and dielectric constants of an R:BaTiO3 single crystal by Brillouin scattering
He Xiao-Kang(何小亢), Zeng Li-Bo(曾立波), Wu Qiong-Shui(吴琼水), Zhang Li-Yan(张丽艳), Zhu Ke(朱恪), and Liu Yu-Long(刘玉龙) . Chin. Phys. B, 2012, 21(6): 067801.
[13] Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃
Yuan Chang-Lai(袁昌来), Liu Xin-Yu(刘心宇), Zhou Chang-Rong(周昌荣), Xu Ji-Wen(许积文), and Yang Yun(杨云) . Chin. Phys. B, 2011, 20(4): 048701.
[14] Structural and electronic properties of Fe-doped BaTiO3 and SrTiO3
Zhang Chao(张超), Wang Chun-Lei(王春雷), Li Ji-Chao(李吉超), and Yang Kun(杨鲲) . Chin. Phys. B, 2007, 16(5): 1422-1428.
[15] Ferroelectric behaviour of 30nm BaTiO3 ceramics prepared by high pressure assisted sintering
Xiao Chang-Jiang(肖长江), Chi Zhen-Hua(迟振华), Li Feng-Ying(李凤英), Feng Shao-Min(冯少敏), Jin Chang-Qing(靳常青), Wang Xiao-Hui(王晓慧), Deng Xiang-Yun(邓湘云), and Li Long-Tu(李龙土). Chin. Phys. B, 2007, 16(10): 3125-3128.
No Suggested Reading articles found!