|
|
Development of the integrated integrating sphere cold atom clock |
Ming-Yuan Yu(于明圆)1,2, Yan-Ling Meng(孟艳玲)1, Mei-Feng Ye(叶美凤)1, Xin Wang(王鑫)1,2, Xin-Chuan Ouyang(欧阳鑫川)1,2, Jin-Yin Wan(万金银)1, Ling Xiao(肖玲)1, Hua-Dong Cheng(成华东)1, Liang Liu(刘亮)1 |
1 Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We develop an integrated integrating sphere cold atom clock (ISCAC), which mainly consists of physical package, laser system, microwave source, and electronics. This compact system is more stable and reliable than the previous version. The experimental results show that the short term frequency stability of 5.4×10-13τ-1/2 and 2.9×10-15 at 1-day integrating time are achieved.
|
Received: 28 February 2019
Revised: 08 April 2019
Accepted manuscript online:
|
PACS:
|
06.30.Ft
|
(Time and frequency)
|
|
42.50.-p
|
(Quantum optics)
|
|
32.30.-r
|
(Atomic spectra?)
|
|
Fund: Project supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos. 61875215, 61727821, and 11604353). |
Corresponding Authors:
Hua-Dong Cheng, Liang Liu
E-mail: chenghd@siom.ac.cn;liang.liu@siom.ac.cn
|
Cite this article:
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮) Development of the integrated integrating sphere cold atom clock 2019 Chin. Phys. B 28 070602
|
[1] |
Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
|
[2] |
Abgrall M, Chupin B, De Sarlo L, Guena J, Laurent P, Le Coq Y, Le Targat R, Lodewyck J, Lours M, Rosenbusch P, Rovera G D and Bize S 2015 C. R. Phys. 16 461
|
[3] |
Lacroute C, Reinhard F, Ramirez-Martinez F, Deutsch C, Schneider T, Reichel J and Rosenbusch P 2010 Ieee Trans. Ultrason. Ferroelectr. Freq. Control 57 106
|
[4] |
Li J, Zhang J H, Bu Y N, Cao C Y, Wang W M and Zheng H F 2016 2016 IEEE International Frequency Control Symposium (IFCS) 30
|
[5] |
Lin H X, Deng J L, Lin J D, Zhang S and Wang Y Z 2018 Appl. Opt. 57 3056
|
[6] |
Micalizio S, Calosso C E, Godone A and Levi F 2012 Metrologia 49 425
|
[7] |
Chen Y H, She L, Wang M, Yang Z H, Liu H and Li J M 2016 Chin. Phys. B 25 120601
|
[8] |
Prestage J D, Tu M R, Chung S K and MacNeal P 2008 2008 IEEE International Frequency Control Symposium, Vols. 1 and 2 651
|
[9] |
Esnault F X, Holleville D, Rossetto N, Guerandel S and Dimarcq N 2010 Phys. Rev. A 82 033436
|
[10] |
Liu P, Meng Y L, Wan J Y, Wang X M, Wang Y N, Xiao L, Cheng H D and Liu L 2015 Phys. Rev. A 92 062101
|
[11] |
Guena J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R X, Gibble K, Clairon A and Bize S 2012 Ieee Trans. Ultrason. Ferroelectr. Freq. Control 59 391
|
[12] |
Santarelli C, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
|
[13] |
Du Y B, Wei R, Dong R C, Zou F and Wang Y Z 2015 Chin. Phys. B 24 070601
|
[14] |
Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 arXiv:1902.02741[physics.atom-ph]
|
[15] |
Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
|
[16] |
Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
|
[17] |
Wang Y Z 1979 National Symposium on Frequency Standards (Chendu, China) p. 100
|
[18] |
Ketterle W, Martin A, Joffe M A and Pritchard D E 1992 Phys. Rev. Lett. 69 2483
|
[19] |
Guillot E, Pottie P E and Dimarcq M 2001 Opt. Lett. 26 1639
|
[20] |
Cheng H D, Zhang W Z, Ma H Y, Liu L and Wang Y Z 2009 Phys. Rev. A 79 023407
|
[21] |
Esnault F X, Rossetto N, Holleville D, Delporte J and Dimarcq N 2011 Adv. Space Res. 47 854
|
[22] |
Wang Y N, Meng Y L, Wan J Y, Yu M Y, Wang X, Xiao L, Cheng H D and Liu L 2018 Phys. Rev. A 97 023421
|
[23] |
Ricehle D F 2005 Frequency Standards: Basics and Applications, Wiley, Darmstadt, p. 77-78
|
[24] |
Zhang W Z, Wang X C, Cheng H D, Xiao L, Liu L and Wang Y Z 2009 Chin. Phys. Lett. 26 083703
|
[25] |
Audoin C, Santarelli G, Makdissi A and Clairon A 1998 Ieee Trans. Ultrason. Ferroelectr. Freq. Control 45 877
|
[26] |
Meng Y L, Cheng H D, Zheng B C, Wang X C, Xiao L and Liu L 2013 Chin. Phys. Lett. 30 063701
|
[27] |
Wang X M, Meng Y L, Wang Y N, Wan J Y, Yu M Y, Wang X, Xiao L, Li T, Cheng H D and Liu L 2017 Chin. Phys. Lett. 34 063702
|
[28] |
Gunn L J, Catlow P G, Al-Ashwal, Hartnett J G, Allison A and Abbott D 2014 IEEE Transactions on Instrumentation & Measurement 63 889-895
|
[29] |
Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, Winel and D J 1993 Phys. Rev. A 47 3554
|
[30] |
Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J and Clairon A 1998 Ieee Trans. Ultrason. Ferroelectr. Freq. Control 45 887
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|