|
|
Charge-state populations for the neon-XFEL system |
Ping Deng(邓萍)1,2, Gang Jiang(蒋刚)1,2 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Chengdu 610065, China |
|
|
Abstract The interaction between neon and x-ray free-electron lasers with different laser parameters is systematically studied by solving a set of coupled rate equations. As an example, the evolution of 1s12s22p6 configuration is given under different incident photon numbers, pulse widths, and photon energies. We have also determined all of the charge-state populations as a function of three laser pulse parameters by averaging over time. The result shows that the variations of these charge-state populations demonstrate a pattern when the pulse width is shorter than 10 fs:some of the charge-states decrease rapidly, while the others rise but remain relatively constant for pulse width larger than 10 fs. The variation of the average charge with three parameters has also obtained. The average charge decreases for a pulse width shorter than 10 fs but remains basically unchanged for a pulse width longer than 10 fs.
|
Received: 14 November 2018
Revised: 03 April 2019
Accepted manuscript online:
|
PACS:
|
32.80.Hd
|
(Auger effect)
|
|
32.80.Aa
|
(Inner-shell excitation and ionization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474208). |
Corresponding Authors:
Gang Jiang
E-mail: gjiang@scu.edu.cn
|
Cite this article:
Ping Deng(邓萍), Gang Jiang(蒋刚) Charge-state populations for the neon-XFEL system 2019 Chin. Phys. B 28 063203
|
[1] |
Pellegrini C, Marinelli A and Reiche S 2016 Rev. Mod. Phys. 88 015006
|
[2] |
Young L, Känter E P, Krassig B et al. 2010 Nature 466 56
|
[3] |
Emma P, Akre R, Arthur J et al. 2010 Nat. Photon. 4 641
|
[4] |
Ishikawa T, Aoyagi H, Asaka T et al. 2012 Nat. Photon. 6 540
|
[5] |
Kang H S, Min C K, Heo H et al. 2017, Nat. Photon. 11 708
|
[6] |
Tschentscher T, Bressler C, Grünert J, Madsen A, Mancuso A P, Meyer M, Scherz A, Sinn H and Zastrau U 2017 Applied Science-Based 7 592
|
[7] |
Milne C J, Schietinger T, Aiba M et al. 2017 Applied Sciences-Basel 7 720
|
[8] |
Milne C J, Beaud P, Deng Y P, Erny C, Follath R, Flechsig U, Hauri P C, Ingold G, Juranic P, Knopp G, Lemke H, Pedrini B, Radi P, and Patthey L 2017 Chimia 71 299
|
[9] |
Galayda J N 2014 in Proceedings of the 2014 International Particle Accelerator Conference, Dresden, Germany, p. 935
|
[10] |
Son S K, Young L and Santra R 2011 Phys. Rev. A 83 033402
|
[11] |
Feldhaus J, Arthur J and Hastings J B 2005 Phys. B: At. Mol. Opt. Phys. 38 S799
|
[12] |
Bostedt C, Boutet S, Fritz D M, Huang Z R, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J and Williams G J 2016 Rev. Mod. Phys. 88 015007
|
[13] |
Ho P J, Bostedt C, Schorb S and Young L 2014 Phys. Rev. Lett. 113 253001
|
[14] |
Hoener M, Fang L, Kornilov O et al. 2010 Phys. Rev. Lett. 104 253002
|
[15] |
Mankowsky R, Subedi A, Först M, Mariager S O, Chollet M, Lemke H T, Robinson J S, Glownia J M, Minitti M P, Frano A, Fechner M, Spaldin N A, Loew T, Keimer B, Georges A and Cavalleri A 2014 Nature 516 71
|
[16] |
Vinko S M, Ciricosta O, Cho B I et al. 2012 Nature 482 59
|
[17] |
Zhang W K, Alonso-Mori R, Bergmann U et al. 2014 Nature 509 345
|
[18] |
Zhou Q J, Lai Y, Bacaj T, Zhao M L, Lyubimov A Y, Uervirojnangkoorn M, Zeldin O B, Brewster A S, Sauter N K, Cohen A E, Soltis S M, Alonso-Mori R, Chollet M, Lemke H T, Pfuetzner R A, Choi U B, Weis W I, Diao J J, Südhof T C and Brunger A T 2015 Nature 525 62
|
[19] |
Fan J D and Jiang H D 2012 Acta Phys. Sin. 61 218702 (in Chinese)
|
[20] |
Lei F and Gang J 2017 Acta Phys. Sin. 66 153201 (in Chinese)
|
[21] |
Yoneda H, Inubushi Y, Yabashi M, Katayama T, Ishikawa T, Ohashi H, Yumoto H, Yamauchi K, Mimura H and Kitamura H 2014 Nat. Commun. 5 5080
|
[22] |
Nagler B, Zastrau U, Fäustlin R R et al. 2009 Nat. Phys. 5 693
|
[23] |
Moribayashi K, Sasaki A and Tajima T 1998 Phys. Rev. A 58 2007
|
[24] |
Rohringer N and Santra R 2007 Phys. Rev. A. 76 033416
|
[25] |
Gao C, Zeng J L and Yuan J M 2015 High Energy Density Physics 14 52
|
[26] |
Gao C, Zeng J L and Yuan J M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 044001
|
[27] |
Ciricosta O, Chung H K, Lee R W and Wark J S 2011 High Energy Density Physics 7 111
|
[28] |
Xiang W J, Gao C, Fu Y S, Zeng J L and Yuan J M 2012 Phys. Rev. A. 86 061401
|
[29] |
Gu M F 2008 Can. J. Phys. 86 675
|
[30] |
Tschentscher T, Altarelli M, Brinkmann R, Delissen T, Schwarz A S and Witte K 2006 Synchrotron Radiation News 19 13
|
[31] |
Lei F 2017 “Hollow atoms formation and x-ray transparency of Ne in 2000 eV XFEL research basing on ionization route,” MS Dissertation (Chengdu: Sichuan University) (in Chinese)
|
[32] |
Bethe H A and Salpeter E E 1977 Quantum Mechanics of One- and Two-Electron Atoms (New York: Plenum Publishing Corporation) p. 300
|
[33] |
Yoneda H, Inubushi Y, Nagamine K, Michine Y, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H, Katayama T, Ishikawa T and Yabashi M 2015 Nature 524 446
|
[34] |
Rohringer N, Ryan D, London R A, Purvis M, Albert F, Dunn J, Bozek J D, Bostedt C, Graf A, Hill R, Hau-Riege S P and Rocca J J 2012 Nature 481 488
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|