|
|
Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance |
Kang Liu(刘康)1, Jiwen Zhao(赵继文)2, Huarui Sun(孙华锐)1, Huaixin Guo(郭怀新)3, Bing Dai(代兵)2, Jiaqi Zhu(朱嘉琦)2 |
1 Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China; 2 Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; 3 Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016, Chin |
|
|
Abstract Thermal transport properties of GaN heteroepitaxial structures are of critical importance for the thermal management of high-power GaN electronic and optoelectronic devices. Ultraviolet (UV) lasers are employed to directly heat and sense the GaN epilayers in the transient thermoreflectance (TTR) measurement, obtaining important thermal transport properties in different GaN heterostructures, which include a diamond thin film heat spreader grown on GaN. The UV TTR technique enables rapid and non-contact thermal characterization for GaN wafers.
|
Received: 21 December 2018
Revised: 15 April 2019
Accepted manuscript online:
|
PACS:
|
07.20.-n
|
(Thermal instruments and apparatus)
|
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
78.20.N-
|
|
|
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61604049) and the Shenzhen Municipal Research Project (Grant No. JCYJ20160531192714636). |
Corresponding Authors:
Huarui Sun
E-mail: huarui.sun@hit.edu.cn
|
Cite this article:
Kang Liu(刘康), Jiwen Zhao(赵继文), Huarui Sun(孙华锐), Huaixin Guo(郭怀新), Bing Dai(代兵), Jiaqi Zhu(朱嘉琦) Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance 2019 Chin. Phys. B 28 060701
|
[1] |
Zhou J and Li B W 2013 Physics 42 89 (in Chinese)
|
[2] |
Käding O W, Skurk H and Goodson K E 1994 Appl. Phys. Lett. 65 1629
|
[3] |
Kuball M and Pomeroy J W 2016 IEEE Trans. Dev. Mater. Reliab. 16 667
|
[4] |
Liu W and Balandin A A 2016 IEEE Electron Dev. Lett. 37 621
|
[5] |
Wang Z L, Tang D W, Jia T and Mao A M 2007 Acta Phys. Sin. 56 747 (in Chinese)
|
[6] |
Sood A, Cho J, Hobart K D, Feygelson T I, Pate B B, Asheghi M, Cahill D G and Goodson K E 2016 J. Appl. Phys. 119 175103
|
[7] |
Sun H, Pomeroy J W, Simon R B, Francis D, Faili F, Twitchen D J and Kuball M 2016 IEEE Electron Dev. Lett. 37 621
|
[8] |
Wang H D, Ma W G, Guo Z Y, Zhang X and Wang W 2011 Chin. Phys. B 20 040701
|
[9] |
Farzaneh M, Maize K, Lüerßen D, Summers J A, Mayer P M, Raad P E, Pipe K P, Shakouri A, Ram R J and Hudgings J A 2009 J. Phys. D: Appl. Phys. 42 143001
|
[10] |
Lancry O, Pichonat E, Réhault J, Moreau M, Aubry R and Gaquiére C 2010 Solid-State Electron. 54 1434
|
[11] |
Nazari M, Hancock B L, Piner E L and Holtz M W 2015 IEEE Trans. Electron. Dev. 62 1467
|
[12] |
Hancock B L, Nazari M, Anderson J, Piner E, Faili F, Oh S, Twitchen D, Graham S and Holtz M W 2016 Appl. Phys. Lett. 108 211901
|
[13] |
Khachatrian A, Roche N H, Ruppalt L, Champlain J, Buchner S and Koehler A 2018 IEEE Trans. Nucl. Sci. 65 369
|
[14] |
Sun H, Simon R B, Pomeroy J W, Francis D, Faili F, Twitchen D J and Kuball M 2015 Appl. Phys. Lett. 106 111906
|
[15] |
Yuan C, Pomeroy J W and Kuball M 2018 Appl. Phys. Lett. 113 102101
|
[16] |
Dai B, Zhao J, Ralchenko V, Khomich A, Popovich A and Liu K 2017 Diamond Relat. Mater. 76 9
|
[17] |
Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C and Keller B P 1997 Appl. Phys. Lett. 71 2572
|
[18] |
Reshchikov M A and Morkoç H 2005 J. Appl. Phys. 97 061301
|
[19] |
Hui P and Tan H S 1994 IEEE Trans. Compon. Packag. Manuf. Technol. Part. B 17 426
|
[20] |
Zhou Y, Anaya J, Pomeroy J W, Sun H, Xing G, Xie A, Beam E, Becker M, Grotjohn T A, Lee C and Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416
|
[21] |
Pomeroy J W, Simon R B, Sun H, Francis D, Faili F, Twitchen D J and Kuball M 2014 IEEE Electron Dev. Lett. 35 1007
|
[22] |
Won Y, Cho J, Agonafer D, Asheghi M and Goodson K E 2017 IEEE Trans. Compon. Packag. Manuf. Technol. 5 737
|
[23] |
Liu W and Balandin A A 2004 Appl. Phys. Lett. 85 5230
|
[24] |
Meyer D J, Feygelson T I, Anderson T J, Roussos J A, Tadjer M J, Downey B P, Katzer D S, Pate B B, Ancona M G, Koehler A D, Hobart K D and Eddy C R 2014 Electron. Dev. Lett. 35 1013
|
[25] |
Kawashima T, Yoshikawa H, Adachi S, Fuke S and Ohtsuka K 1997 J. Appl. Phys. 82 3528
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|