Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 060701    DOI: 10.1088/1674-1056/28/6/060701
GENERAL Prev   Next  

Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance

Kang Liu(刘康)1, Jiwen Zhao(赵继文)2, Huarui Sun(孙华锐)1, Huaixin Guo(郭怀新)3, Bing Dai(代兵)2, Jiaqi Zhu(朱嘉琦)2
1 Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China;
2 Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China;
3 Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute, Nanjing 210016, Chin
Abstract  Thermal transport properties of GaN heteroepitaxial structures are of critical importance for the thermal management of high-power GaN electronic and optoelectronic devices. Ultraviolet (UV) lasers are employed to directly heat and sense the GaN epilayers in the transient thermoreflectance (TTR) measurement, obtaining important thermal transport properties in different GaN heterostructures, which include a diamond thin film heat spreader grown on GaN. The UV TTR technique enables rapid and non-contact thermal characterization for GaN wafers.
Keywords:  GaN heteroepitaxy      thermal conductivity      transient thermoreflectance      ultraviolet laser  
Received:  21 December 2018      Revised:  15 April 2019      Accepted manuscript online: 
PACS:  07.20.-n (Thermal instruments and apparatus)  
  65.40.-b (Thermal properties of crystalline solids)  
  61.72.uj (III-V and II-VI semiconductors)  
  78.20.N-  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61604049) and the Shenzhen Municipal Research Project (Grant No. JCYJ20160531192714636).
Corresponding Authors:  Huarui Sun     E-mail:  huarui.sun@hit.edu.cn

Cite this article: 

Kang Liu(刘康), Jiwen Zhao(赵继文), Huarui Sun(孙华锐), Huaixin Guo(郭怀新), Bing Dai(代兵), Jiaqi Zhu(朱嘉琦) Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance 2019 Chin. Phys. B 28 060701

[1] Zhou J and Li B W 2013 Physics 42 89 (in Chinese)
[2] Käding O W, Skurk H and Goodson K E 1994 Appl. Phys. Lett. 65 1629
[3] Kuball M and Pomeroy J W 2016 IEEE Trans. Dev. Mater. Reliab. 16 667
[4] Liu W and Balandin A A 2016 IEEE Electron Dev. Lett. 37 621
[5] Wang Z L, Tang D W, Jia T and Mao A M 2007 Acta Phys. Sin. 56 747 (in Chinese)
[6] Sood A, Cho J, Hobart K D, Feygelson T I, Pate B B, Asheghi M, Cahill D G and Goodson K E 2016 J. Appl. Phys. 119 175103
[7] Sun H, Pomeroy J W, Simon R B, Francis D, Faili F, Twitchen D J and Kuball M 2016 IEEE Electron Dev. Lett. 37 621
[8] Wang H D, Ma W G, Guo Z Y, Zhang X and Wang W 2011 Chin. Phys. B 20 040701
[9] Farzaneh M, Maize K, Lüerßen D, Summers J A, Mayer P M, Raad P E, Pipe K P, Shakouri A, Ram R J and Hudgings J A 2009 J. Phys. D: Appl. Phys. 42 143001
[10] Lancry O, Pichonat E, Réhault J, Moreau M, Aubry R and Gaquiére C 2010 Solid-State Electron. 54 1434
[11] Nazari M, Hancock B L, Piner E L and Holtz M W 2015 IEEE Trans. Electron. Dev. 62 1467
[12] Hancock B L, Nazari M, Anderson J, Piner E, Faili F, Oh S, Twitchen D, Graham S and Holtz M W 2016 Appl. Phys. Lett. 108 211901
[13] Khachatrian A, Roche N H, Ruppalt L, Champlain J, Buchner S and Koehler A 2018 IEEE Trans. Nucl. Sci. 65 369
[14] Sun H, Simon R B, Pomeroy J W, Francis D, Faili F, Twitchen D J and Kuball M 2015 Appl. Phys. Lett. 106 111906
[15] Yuan C, Pomeroy J W and Kuball M 2018 Appl. Phys. Lett. 113 102101
[16] Dai B, Zhao J, Ralchenko V, Khomich A, Popovich A and Liu K 2017 Diamond Relat. Mater. 76 9
[17] Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C and Keller B P 1997 Appl. Phys. Lett. 71 2572
[18] Reshchikov M A and Morkoç H 2005 J. Appl. Phys. 97 061301
[19] Hui P and Tan H S 1994 IEEE Trans. Compon. Packag. Manuf. Technol. Part. B 17 426
[20] Zhou Y, Anaya J, Pomeroy J W, Sun H, Xing G, Xie A, Beam E, Becker M, Grotjohn T A, Lee C and Kuball M 2017 ACS Appl. Mater. Interfaces 9 34416
[21] Pomeroy J W, Simon R B, Sun H, Francis D, Faili F, Twitchen D J and Kuball M 2014 IEEE Electron Dev. Lett. 35 1007
[22] Won Y, Cho J, Agonafer D, Asheghi M and Goodson K E 2017 IEEE Trans. Compon. Packag. Manuf. Technol. 5 737
[23] Liu W and Balandin A A 2004 Appl. Phys. Lett. 85 5230
[24] Meyer D J, Feygelson T I, Anderson T J, Roussos J A, Tadjer M J, Downey B P, Katzer D S, Pate B B, Ancona M G, Koehler A D, Hobart K D and Eddy C R 2014 Electron. Dev. Lett. 35 1013
[25] Kawashima T, Yoshikawa H, Adachi S, Fuke S and Ohtsuka K 1997 J. Appl. Phys. 82 3528
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[10] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[11] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[12] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[13] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!