Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 020303    DOI: 10.1088/1674-1056/28/2/020303
GENERAL Prev   Next  

Phase diagram of interacting fermionic two-leg ladder with pair hopping

Wan-Li Liu(刘万里)1,2, Tian-Zhong Yuan(原天忠)1, Zhi Lin(林志)1,2, Wei Yan(闫伟)1
1 Department of Physics, State Key Laboratory of Surface Physics and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China;
2 School of Physics and Materials Science, Anhui University, Hefei 230601, China
Abstract  

We study the phase diagram of the interacting fermionic two-leg ladder, which is featured by pair hopping and interactions of singlet and triplet superconducting channels. By using Abelian bosonization method, we obtain the full phase diagram of our model. The superconducting triplet pairing phase is characterized by a fractional edge spin and interpreted as two Kitaev chains under the mean filed approximation. The pair hopping will give rise to spin-density-wave (SDW) orders and can also support Majorana edge modes in spin channel. At half filling, the resulting Majorana-SDW phase shows additional fractionalization in charge channel, and can be interpreted as two Su-Schrieffer-Heeger (SSH) chains in the mean field regime.

Keywords:  two-leg ladder      pair hopping      bosonization      Majorana fermion  
Received:  16 October 2018      Revised:  13 December 2018      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
Fund: 

Project supported by the Open Project of the State Key Laboratory of Surface Physics in Fudan University, China (Grant No. KF2018_13) and the Ph. D. Research Startup Foundation of Anhui University (Grant No. J01003310).

Corresponding Authors:  Zhi Lin, Wei Yan     E-mail:  zhilin13@fudan.edu.cn;weiyan11@fudan.edu.cn

Cite this article: 

Wan-Li Liu(刘万里), Tian-Zhong Yuan(原天忠), Zhi Lin(林志), Wei Yan(闫伟) Phase diagram of interacting fermionic two-leg ladder with pair hopping 2019 Chin. Phys. B 28 020303

[1] Klitzing K V 1986 Rev. Mod. Phys. 58 519
[2] Verstraete F, Cirac J I, Latorre J I, Rico E and Wolf M M 2005 Phys. Rev. Lett. 94 140601
[3] Chen X, Gu Z C and Wen X G 2010 Phys. Rev. B 82 155138
[4] Keselman A and Berg E 2015 Phys. Rev. B 91 235309
[5] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[6] Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
[7] Wen X G and Niu Q 1990 Phys. Rev. B 41 9377
[8] Moore G and Read N 1991 Nucl. Phys. B 360 362
[9] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[10] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[11] Ezawa Motohiko 2013 Phys. Rev. B 87 155415
[12] Zhou T, Zhang J, Zhao B, Zhang H and Yang Z 2015 Nano Lett. 15 5149
[13] Zhou T, Zhang J, Xue Y, Zhao B, Zhang H, Jiang H and Yang Z 2016 Phys. Rev. B 94 235449
[14] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[15] Kitaev A Y 2001 Phys.-Usp. 44 131
[16] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[17] Alicea J 2012 Rep. Prog. Phys. 75 076501
[18] Beenakker C W J 2013 Ann. Rev. Condens. Matter Phys. 4 113
[19] Liu X J, Wong C L M and Law K T 2014 Phys. Rev. X 4 021018
[20] Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
[21] Lutchyn R M, Sau J D and Sarma S D 2010 Phys. Rev. Lett. 105 077001
[22] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[23] Chen C 2013 Phys. Rev. Lett. 111 235302
[24] Liu X J, Hu H and Pu H 2015 Chin. Phys. B. 24 050502
[25] Zhang D P and Tian G S 2015 Chin. Phys. B. 24 080401
[26] Liu D P 2016 Chin. Phys. B 25 057101
[27] Mourik V, Zou K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[28] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[29] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
[30] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Phys. Rev. B 78 195125
[31] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2010 New J. Phys. 12 065010
[32] Kitaev A Y 2009 AIP Conf. Proc. 1134 22
[33] Fidkowski L and Kitaev A 2010 Phys. Rev. B 81 134509
[34] Cheng M and Tu H H 2011 Phys. Rev. B 84 094503
[35] Fidkowski L, Lutchyn R M, Nayak C and Fisher M P A 2011 Phys. Rev. B 84 195436
[36] Sau J D, Halperin B I, Flensberg K and Sarma S D 2011 Phys. Rev. B 84 144509
[37] Kraus C V, Dalmonte M, Baranov M A, Läuchli A M and Zoller P 2013 Phys. Rev. Lett. 111 173004
[38] Iemini F, Mazza L, Rossini D, Fazio R and Diehl S 2015 Phys. Rev. Lett. 115 156402
[39] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[40] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[41] Chen X, Gu Z C and Wen X G 2011 Phys. Rev. B 83 035107
[42] Zhang D B, Wang Q H and Wang Z D 2016 arxiv: 1602 01267
[43] Giamarchi T 2004 Quantum Physics in One-Dimension (Oxford: Oxford Science Publications)
[44] Fradkin E 2013 Field Theories of Condensed Matter Physics (New York: Cambridge University Press)
[45] Sigrist M and Rice T M 1987 Z. Phys. B. Condens. Matter 68 9
[46] Keselman A, Fu L, Stern A and Berg E 2013 Phys. Rev. Lett. 111 116402
[47] Lieb E H and Liniger W 1963 Phys. Rev. 130 1605
[48] Mathey L, Wang D W, Hofstetter W, Lukin M D and Demler E 2004 Phys. Rev. Lett. 93 120404
[49] Jordan P and Wigner E 1928 Z. Physik 47 631
[50] Cazalilla M A and Ho A F 2003 Phys. Rev. Lett. 91 150403
[51] Greschner S, Piraud M, Heidrich-Meisner F, McCulloch I P, Schollwöck U and Vekua T 2015 Phys. Rev. Lett. 115 190402
[52] Chen C, Yan W, Ting C S and Chen Y 2016 arXiv: 1602 01369
[1] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[2] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[3] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[4] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[5] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[6] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[7] Chiral p-wave pairing of ultracold fermionic atoms due to a quadratic band touching
Hai-Xiao Wang(王海啸), Zi-Heng Liu(刘子衡), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2018, 27(2): 027402.
[8] The stability of Majorana fermion in correlated quantum wire
Zhang De-Ping (张德平), Tian Guang-Shan (田光善). Chin. Phys. B, 2015, 24(8): 080401.
[9] Majorana fermion realization and relevant transport processes in a triple-quantum dot system
Deng Ming-Xun (邓明勋), Zheng Shi-Han (郑诗菡), Yang Mou (杨谋), Hu Liang-Bin (胡梁宾), Wang Rui-Qiang (王瑞强). Chin. Phys. B, 2015, 24(3): 037302.
[10] Topological phase transitions driven by next-nearest-neighbor hopping in noncentrosymmetric cold Fermi gases
Wang Rui (王瑞), Zhang Cun-Xi (张存喜), Ji Qing-Shan (计青山). Chin. Phys. B, 2015, 24(3): 030305.
[11] Detection of Majorana fermions in an Aharonov-Bohm interferometer
Shang En-Ming (尚恩明), Pan Yi-Ming (潘义明), Shao Lu-Bing (邵陆兵), Wang Bai-Gen (王伯根). Chin. Phys. B, 2014, 23(5): 057201.
[12] All-electrically reading out and initializing topological qubits with quantum dots
Chen Wei (陈伟), Xue Zheng-Yuan (薛正远), Wang Z. D.(汪子丹) , Shen Rui (沈瑞). Chin. Phys. B, 2014, 23(3): 030309.
[13] Extended Bose–Hubbard model with pair hopping on triangular lattice
Wang Yan-Cheng (王艳成), Zhang Wan-Zhou (张万舟), Shao Hui (邵慧), Guo Wen-An (郭文安). Chin. Phys. B, 2013, 22(9): 096702.
No Suggested Reading articles found!