ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Propagation of a Pearcey beam in uniaxial crystals |
Chuangjie Xu(许创杰), Ludong Lin(林露东), Zhengzhong Huang(黄郑重), Donglong He(何东龙), Dongmei Deng(邓冬梅) |
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China |
|
|
Abstract An analytical propagation expression of a Pearcey beam in uniaxial crystals orthogonal to the optical axis is derived. The propagations of the Pearcey beam in the tourmaline and the quartz are investigated. The phase distribution and the angular momentum of the Pearcey beam in the tourmaline are also performed. The result shows that the positions of the auto-focusing and the inversion simply relate to the extraordinary refractive index of the crystals. In other words, we can choose the suitable crystals to adjust the positions of auto-focusing and inversion of the Pearcey beam to meet the actual needs.
|
Received: 05 June 2018
Revised: 16 October 2018
Accepted manuscript online:
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775083 and 11374108). |
Corresponding Authors:
Dongmei Deng
E-mail: dmdeng@263.net
|
Cite this article:
Chuangjie Xu(许创杰), Ludong Lin(林露东), Zhengzhong Huang(黄郑重), Donglong He(何东龙), Dongmei Deng(邓冬梅) Propagation of a Pearcey beam in uniaxial crystals 2019 Chin. Phys. B 28 024201
|
[1] |
Hu Y, Siviloglou G A, Zhang P, Efremidis N K, Christodoulides D N and Chen Z 2012 Springer Ser. Optical Sci. 170 1
|
[2] |
Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K and Dennis M R 2012 Opt. Express series 20 18955
|
[3] |
Deng D M, Peng X, Chen C D, Chen B, Peng Y L and Zhou M L 2015 J Korean Phys. Soc. 66 774
|
[4] |
Kovalev A A, Kotlyar V V, Zaskanov S G and Porfirev A P 2015 J. Opt. 17 1
|
[5] |
Ren Z J, Ying C F, Jin H Z and Chen B 2015 J. Opt. 17 105608
|
[6] |
Berry M V and Upstill C 1980 Prog. Opt. 18 257
|
[7] |
Kaminski D and Paris R B 1999 J. Comput. Appl. Math. 107 31
|
[8] |
Deng D M, Chen C D, Zhao X, Chen B, Peng X and Zheng Y S 2014 Opt. Lett. 39 2703
|
[9] |
Chen X Y, Zhuang J L, Peng X, Li D D, Zhang L P, Zhao F and Deng D M 2019 Opt. Laser Technol. 109 518
|
[10] |
Chen X Y, Deng D M, Zhuang J L, Yang X B, Liu H Z and Wang G H 2018 Appl. Opt. 57 8418
|
[11] |
Chen X Y, Deng D M, Zhuang J L, Peng X, Li D D, Zhang L P, Zhao F, Yang X B, Liu H Z and Wang G H 2018 Opt. Lett. 43 3626
|
[12] |
Chen X Y, Zhuang J L, Li D D, Zhang L P, Peng X, Zhao F, Yang X B, Liu H Z and Deng D M 2018 J. Opt. 20 075607
|
[13] |
Peng Y L, Chen C D, Chen B, Peng X, Zhou M L, Zhang L P, Li D D and Deng D M 2016 Laser Phys. 26 125401
|
[14] |
Xu C J, Lin L D, Huang Z Z, Chen Y Z, Yang X B, Liu H Z and Deng D M 2018 Laser Phys. 28 115001
|
[15] |
Yariv A and Yeh P 1984 Optical waves in crystals (New York: Wiley)
|
[16] |
Chen H C 1983 Theory of electromagnetic waves (New York: McGraw-Hill)
|
[17] |
Born M and Wolf E 1999 Principles of optics (Oxford: Pergamon)
|
[18] |
Zhou G Q, Chen R P and Chu X X 2012 Opt. Express 20 2196
|
[19] |
Ivanov M O and Shostka N V 2016 J. Opt. 18 075603
|
[20] |
Khilo N A 2012 Opt. Commun. 285 503
|
[21] |
Yu J, Xiao S L, Yao L, Liu S Y and Li J 2017 J. Mod. Opt. 64 616
|
[22] |
Zhang Y T, Pan L Z and Cai Y J 2017 IEEE Photon. J. 9 1
|
[23] |
Deng D M, Chen C D, Zhao X and Li H G 2013 Appl. Phys. B 110 433
|
[24] |
Zhou M L, Chen C D, Chen B, Peng X, Peng Y L and Deng D M 2015 Chin. Phys. B 24 124102
|
[25] |
Yu W H, Zhao R H, Deng F, Huang J Y, Chen C D, Yang X B, Zhao Y P and Deng D M 2016 Chin. Phys. B 25 044201
|
[26] |
Deng F and Deng D M 2016 Opt. Commun. 380 280
|
[27] |
Li D D, Peng X, Peng Y L, Zhang L P and Deng D M 2017 J. Opt. Soc. Am. B 34 891
|
[28] |
Zhang J B, Zhou K Z, Liang J H, Lai Z Y, Yang X L and Deng D M 2018 Opt. Express 26 1290
|
[29] |
Chen Y Z, GZhao G W, Ye F, Xu C J and Deng D M 2018 Chin. Phys. B 27 104201.
|
[30] |
Wang L Y, Zhang J B, Feng L Y, Pang Z H, Zhong T F and Deng D M 2018 Chin. Phys. B 27 054103.
|
[31] |
Xie J T, Zhang J B, Zheng X T, Ye J R and Deng D M 2018 Opt. Express 26 11309.
|
[32] |
Cheng K, Lu G and Zhong X Q 2017 Appl. Phys. B 123 60
|
[33] |
Ciattoni A and Palma C 2003 J. Opt. Soc. Am. A 20 2163
|
[34] |
Stamnes J J 1986 Waves in Focal Regions (Taylor and Francis)
|
[35] |
He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826
|
[36] |
Ashkin A, Dziedzic J M, Bjorkholm J E and Steven C 1986 Opt. Lett. 11 288
|
[37] |
Sztul H I and Alfano R R 2008 Opt. Express 16 9411
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|