Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024201    DOI: 10.1088/1674-1056/28/2/024201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Propagation of a Pearcey beam in uniaxial crystals

Chuangjie Xu(许创杰), Ludong Lin(林露东), Zhengzhong Huang(黄郑重), Donglong He(何东龙), Dongmei Deng(邓冬梅)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
Abstract  

An analytical propagation expression of a Pearcey beam in uniaxial crystals orthogonal to the optical axis is derived. The propagations of the Pearcey beam in the tourmaline and the quartz are investigated. The phase distribution and the angular momentum of the Pearcey beam in the tourmaline are also performed. The result shows that the positions of the auto-focusing and the inversion simply relate to the extraordinary refractive index of the crystals. In other words, we can choose the suitable crystals to adjust the positions of auto-focusing and inversion of the Pearcey beam to meet the actual needs.

Keywords:  crystal optics      diffraction theory      propagation  
Received:  05 June 2018      Revised:  16 October 2018      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11775083 and 11374108).

Corresponding Authors:  Dongmei Deng     E-mail:  dmdeng@263.net

Cite this article: 

Chuangjie Xu(许创杰), Ludong Lin(林露东), Zhengzhong Huang(黄郑重), Donglong He(何东龙), Dongmei Deng(邓冬梅) Propagation of a Pearcey beam in uniaxial crystals 2019 Chin. Phys. B 28 024201

[1] Hu Y, Siviloglou G A, Zhang P, Efremidis N K, Christodoulides D N and Chen Z 2012 Springer Ser. Optical Sci. 170 1
[2] Ring J D, Lindberg J, Mourka A, Mazilu M, Dholakia K and Dennis M R 2012 Opt. Express series 20 18955
[3] Deng D M, Peng X, Chen C D, Chen B, Peng Y L and Zhou M L 2015 J Korean Phys. Soc. 66 774
[4] Kovalev A A, Kotlyar V V, Zaskanov S G and Porfirev A P 2015 J. Opt. 17 1
[5] Ren Z J, Ying C F, Jin H Z and Chen B 2015 J. Opt. 17 105608
[6] Berry M V and Upstill C 1980 Prog. Opt. 18 257
[7] Kaminski D and Paris R B 1999 J. Comput. Appl. Math. 107 31
[8] Deng D M, Chen C D, Zhao X, Chen B, Peng X and Zheng Y S 2014 Opt. Lett. 39 2703
[9] Chen X Y, Zhuang J L, Peng X, Li D D, Zhang L P, Zhao F and Deng D M 2019 Opt. Laser Technol. 109 518
[10] Chen X Y, Deng D M, Zhuang J L, Yang X B, Liu H Z and Wang G H 2018 Appl. Opt. 57 8418
[11] Chen X Y, Deng D M, Zhuang J L, Peng X, Li D D, Zhang L P, Zhao F, Yang X B, Liu H Z and Wang G H 2018 Opt. Lett. 43 3626
[12] Chen X Y, Zhuang J L, Li D D, Zhang L P, Peng X, Zhao F, Yang X B, Liu H Z and Deng D M 2018 J. Opt. 20 075607
[13] Peng Y L, Chen C D, Chen B, Peng X, Zhou M L, Zhang L P, Li D D and Deng D M 2016 Laser Phys. 26 125401
[14] Xu C J, Lin L D, Huang Z Z, Chen Y Z, Yang X B, Liu H Z and Deng D M 2018 Laser Phys. 28 115001
[15] Yariv A and Yeh P 1984 Optical waves in crystals (New York: Wiley)
[16] Chen H C 1983 Theory of electromagnetic waves (New York: McGraw-Hill)
[17] Born M and Wolf E 1999 Principles of optics (Oxford: Pergamon)
[18] Zhou G Q, Chen R P and Chu X X 2012 Opt. Express 20 2196
[19] Ivanov M O and Shostka N V 2016 J. Opt. 18 075603
[20] Khilo N A 2012 Opt. Commun. 285 503
[21] Yu J, Xiao S L, Yao L, Liu S Y and Li J 2017 J. Mod. Opt. 64 616
[22] Zhang Y T, Pan L Z and Cai Y J 2017 IEEE Photon. J. 9 1
[23] Deng D M, Chen C D, Zhao X and Li H G 2013 Appl. Phys. B 110 433
[24] Zhou M L, Chen C D, Chen B, Peng X, Peng Y L and Deng D M 2015 Chin. Phys. B 24 124102
[25] Yu W H, Zhao R H, Deng F, Huang J Y, Chen C D, Yang X B, Zhao Y P and Deng D M 2016 Chin. Phys. B 25 044201
[26] Deng F and Deng D M 2016 Opt. Commun. 380 280
[27] Li D D, Peng X, Peng Y L, Zhang L P and Deng D M 2017 J. Opt. Soc. Am. B 34 891
[28] Zhang J B, Zhou K Z, Liang J H, Lai Z Y, Yang X L and Deng D M 2018 Opt. Express 26 1290
[29] Chen Y Z, GZhao G W, Ye F, Xu C J and Deng D M 2018 Chin. Phys. B 27 104201.
[30] Wang L Y, Zhang J B, Feng L Y, Pang Z H, Zhong T F and Deng D M 2018 Chin. Phys. B 27 054103.
[31] Xie J T, Zhang J B, Zheng X T, Ye J R and Deng D M 2018 Opt. Express 26 11309.
[32] Cheng K, Lu G and Zhong X Q 2017 Appl. Phys. B 123 60
[33] Ciattoni A and Palma C 2003 J. Opt. Soc. Am. A 20 2163
[34] Stamnes J J 1986 Waves in Focal Regions (Taylor and Francis)
[35] He H, Friese M E J, Heckenberg N R and Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826
[36] Ashkin A, Dziedzic J M, Bjorkholm J E and Steven C 1986 Opt. Lett. 11 288
[37] Sztul H I and Alfano R R 2008 Opt. Express 16 9411
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[5] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[6] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[7] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[8] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[9] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[10] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[11] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[12] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[13] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[14] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[15] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
No Suggested Reading articles found!