Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 014205    DOI: 10.1088/1674-1056/28/1/014205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Controllable transmission of vector beams in dichroic medium

Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利)
Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

Vector beams with spatially varying polarization distribution in the wavefront plane have received increasing attention in recent years. The manipulation of vector beams both in intensity and polarization distributions is highly desired and under development. In this work, we study the transmission property of vector beams through warm rubidium vapor and realize controllable transmission of vector beams based on atomic dichroism. By utilizing the linearly polarized beam and vector beams as the pump and probe beams in a pump-probe configuration, a spatially-dependent dichroism can be obtained, which leads to spatially varied absorption of the probe beam. The controllable intensity distribution of the probe beam, as a two-petal pattern, can rotate with the variation of the pump beam's polarization states. We experimentally demonstrate the mechanism of dichroism with linear polarization light and provide an explanation based on the optical pumping effect. Alternatively, the varying trend of the probe beam's intensity is also interpreted by utilizing the Jones matrix. Our results are thus beneficial for providing potential applications in optical manipulation in atomic ensembles.

Keywords:  quantum optics      polarization      dichroism  
Received:  04 May 2018      Revised:  06 September 2018      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.25.Ja (Polarization)  
  33.55.+b (Optical activity and dichroism)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11774286, 11374238, 11534008, 11604258, and 11574247), China Postdoctoral Science Foundation (Grant No. 2016M592771), and the Fundamental Research Funds for the Central Universities, China (Grant No. xjj2018213).

Corresponding Authors:  Hong Gao     E-mail:  honggao@xjtu.edu.cn

Cite this article: 

Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利) Controllable transmission of vector beams in dichroic medium 2019 Chin. Phys. B 28 014205

[1] Christian M, Alexander J, Swverin F, Stefan B and Monika R M 2007 New J. Phys. 9 78
[2] Zhan Q 2009 Adv. Opt. Photonics 1 1
[3] Milione G, Evans S, Nolan D A and Alfano R R 2012 Phys. Rev. Lett. 108 190401
[4] Han Y J, Liao G Q, Chen L M, Li Y T, Wang W M and Zhang J 2015 Chin. Phys. B 24 115203
[5] Huan C, Ling X H, Chen Z H, Li Q G, Lv H, Yu H Q and Yi X N 2016 Chin. Phys. B 7 074201
[6] Epstein M S, Bayer S, Bradshaw J, Voigtman E and Winefordner J D 1980 Spectrochimica Acta Part B Atomic Spectroscopy 35 233
[7] Segura A, Artus L, Cusco R, Taniguchi T, Cassabois G and Gil B 2018 Phys. Rev. Mater. 2 024001
[8] Lee Y S, Onoda S, Arima T, Tokunaga Y, He J P, Kaneko Y, Nagaosa N and Tokura Y 2006 Phys. Rev. Lett. 97 077203
[9] Huang X W, Deng Z X, Shi X H, Bai Y F and Fu X Q 2018 Opt. Express 26 4786
[10] Vershinin O I, Konyashkin A V and Ryabushkin O A 2018 Opt. Lett. 43 58
[11] Mujumdar S and Ramachandran H 2004 Opt. Communications 241 1
[12] Townsend M G 1970 J. Phys. Chem. Solids 31 2481
[13] Tyrk M A, Gillespie W A, Seifert G and Abdolvand A 2013 Opt. Express 21 21823
[14] Harris M L, Adams C S, Cornish S L, Mcleod I C, Tarleton E and Hughes I G 2006 Phys. Rev. A 73 062509
[15] Huy D D, Geol M and Heung-Ryoul N 2008 Phys. Rev. A 77 032513
[16] Fleischhauer M and Marangos J P 2005 Rev. Mod. Phys. 77 633
[17] Cao M T, Zhang L Y, Yu Y, Ye F J, Wei D, Guo W G, Zhang S G, Gao H and Li F L 2014 Opt. Lett. 39 2723
[18] Yu Y, Wang C Y, Liu J, Wang J W, Cao M T, Wei D, Gao H and Li F L 2016 Opt. Express. 24 18290
[19] Cao M T, Yu Y, Zhang L Y, Ye F J, Wang Y L, Wei D, Zhang P, Guo W G, Zhang S G, Gao H and Li F L 2014 Opt. Express. 22 20177
[20] Gozzini S, Fioretti A, Lucchesini A, Marmugi L, Marinelli C, Tsvetkov S, Gateva S and Cartaleva S 2017 Opt. Lett. 42 2930
[21] Wang X L, Chen J, Li Y N, Ding J P, Guo C S and Wang H T 2010 Phys. Rev. Lett. 105 253602
[22] Xi S X, Wang X L, Huang S, Chang S J and Lin L 2015 Acta Phys. Sin. 64 124202 (in Chinese)
[23] Wang J M, He C J, Liu Y W, Yang F, Tian W and Wu T 2016 Acta Phys. Sin. 65 044202 (in Chinese)
[24] Li Y, Zhu Z Q, Wang X L, Gong L P, Feng S T and Nie S P 2015 Acta Phys. Sin. 64 024204 (in Chinese)
[25] Zhou Q Q, Shi J Z, Ji X M and Yin J P 2015 Acta Phys. Sin. 64 053702 (in Chinese)
[26] Shigematsu K, Suzuki M, Yamane K, Morita R and Toda Y 2016 Appl. Phys Express 9 122401
[27] Fatemi F K 2011 Opt. Express 19 25143
[28] Liron S, Anat S, Eliran T and Uriel L 2016 Opt. Express 24 4834
[29] Marrucci L, Manzo C and Paparo D 2006 Phys. Rev. Lett. 96 163905
[30] Wang J W, Yang X, Li Y K, Chen Y, Cao M T, Wei D, Gao H and Li F L 2018 Photonics Research 6 451
[31] Lee H S, Park S E, Park J D and Cho H 1994 J. Opt. Soc. Am. B 11 558
[32] Budker D, Kimball D F, Rochester S M and Yachchuk V V 2000 Phys. Rev. Lett. 85 2088
[33] Sullivan J P, Gilbert S J, Marler J P, Greaves R G, Buckman S J and Surko C M 2002 Phys. Rev. A 66 042708
[34] Nakayama S 1997 Phys. Scr. 20 64
[35] Geol M and Noh H R 2008 J. Opt. Soc. Am. B 25 000701
[36] Banerjee A and Natarajan V 2003 J. Opt. Soc. Am. B 28 001912
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[5] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[9] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[15] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
No Suggested Reading articles found!