Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 123402    DOI: 10.1088/1674-1056/27/12/123402
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Resonances for positron-helium and positron-lithium systems in kappa-distribution plasma

Zi-Shi Jiang(姜子实)1, Ya-Chen Gao(高亚臣)1, Sabyasachi Kar2, Kurunathan Ratnavelu3
1 Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, and College of Physical Science and Technology, Heilongjiang University, Harbin 150080, China;
2 Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
3 Department of Mathematics, University of Malaya, Kuala Lampur, Malaysia
Abstract  

S-wave resonances of positron-helium and positron-lithium systems in kappa-distribution plasmas are investigated using Hylleraas-type wave functions in the framework of the stabilization method. A model potential approach is used to represent the interactions between the outer electron, the positron and the core. The resonance parameters (position and width) of positron-helium and positron-lithium systems below the Ps(2s) threshold are reported as a function of screening parameter and spectral index of plasma.

Keywords:  positron-atom scattering      kappa-distribution plasmas      model potential approach      variational method  
Received:  22 July 2018      Revised:  18 September 2018      Accepted manuscript online: 
PACS:  34.80.Uv (Positron scattering)  
  52.20.-j (Elementary processes in plasmas)  
  95.30.Dr (Atomic processes and interactions)  
Fund: 

Project supported by the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015019), the Fundamental Research Funds of Heilongjiang University, Heilongjiang Province, China (Grant No. HDJCCX-201625), the Natural Science Foundation for Distinguished Young Scholars in Heilongjiang University, China (Grant No. JCL201503), and the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2017008).

Corresponding Authors:  Ya-Chen Gao     E-mail:  gaoyachen@hlju.edu.cn

Cite this article: 

Zi-Shi Jiang(姜子实), Ya-Chen Gao(高亚臣), Sabyasachi Kar, Kurunathan Ratnavelu Resonances for positron-helium and positron-lithium systems in kappa-distribution plasma 2018 Chin. Phys. B 27 123402

[1] Pierrard V and Lazar M 2010 Sol. Phys. 267 153
[2] Livadiotis G and McComas D J 2013 Space Sci. Rev. 175 183
[3] Yoon P H 2014 J. Geophys. Res.: Space Phys. 119 7074
[4] Cranmer S R 2014 Astrophys. J. Lett. 791 L31
[5] Zhang Y, Liu X and Zhang B 2014 Astrophys. J. 780 93
[6] Livadiotis G 2015 J. Geophys. Res.: Space Phys. 120 1607
[7] Livadiotis G 2018 J. Geophys. Res.: Space Phys. 123 1050
[8] Livadiotis G 2018 Europhys. Lett. 122 50001
[9] Vasyliunas V M 1968 J. Geophys. Res. 73 2839
[10] Rubab N and Murtaza G 2006 Phys. Scr. 74 145
[11] Jung Y D 2009 Astrophys. J. 695 917
[12] Ki D H and Jung Y D 2010 Appl. Phys. Lett. 97 071501
[13] Song M Y and Jung Y D 2005 Phys. Plasmas 12 014506
[14] Li H W and Kar S 2012 Eur. Phys. J. D 66 304
[15] Jiang P, Kar S and Zhou Y 2013 Few-Body Syst. 54 1911
[16] Kar S, Jiang Z, Cheng Y and Ho Y K 2015 J. Phys.: Conf. Ser. 635 052019
[17] Kar S, Wang Y and Ho Y K 2015 J. Phys.: Conf. Ser. 635 122001
[18] Kar S, Wang Y, Ho Y K and Jiang Z 2016 Few-Body Syst. 57 1139
[19] Kim S, Schlickeiser R, Yoon P H, Lopez R A and Lazar M 2017 Plasma Phys. Control. Fusion 59 125003
[20] Wang L and Du J 2017 Phys. Plasmas 24 102305
[21] Kar S and Ho Y K 2004 J. Phys. B 37 3177
[22] Ren Z, Han H and Shi T 2011 J. Phys. B 44 065204
[23] Yu R, Cheng Y, Wang Y and Zhou Y 2012 Chin. Phys. B 21 053402
[24] Ward S J, Horbatsch M, McEachran R P and Stauffer A D 1989 J. Phys. B 22 3763
[25] Roy U and Ho Y K 2002 J. Phys. B 35 2149
[26] Roy U and Ho Y K 2004 Nucl. Instrum. Method Phys. Res. B 221 36
[27] Han H L, Zhong Z X, Zhang X Z and Shi T Y 2008 Phys. Rev. A 78 044701
[28] Liu F, Cheng Y, Zhou Y and Jiao L 2011 Phys. Rev. A 83 032718
[29] Ghoshal A and Ho Y K 2016 Eur. Phys. J. D 70 265
[30] Ghoshal A and Ho Y K 2017 Phys. Rev. A 95 052502
[31] Mandelshtam V A, Ravuri T R and Taylor H S 1993 Phys. Rev. Lett. 70 1932
[32] Tan S S and Ho Y K 1997 Chin. J. Phys. 35 701
[33] Kar S and Ho Y K 2009 J. Phys. B 42 044007
[34] Bachau H, Galan P and Martin F 1990 Phys. Rev. A 41 3534
[35] Sever R and Tezcan C 1987 Phys. Rev. A 36 1045
[36] Varshni Y P 1988 Phys. Rev. A 38 1595
[37] Varshni Y P 2003 Eur. Phys. J. D 22 229
[38] Sahoo S and Ho Y K 2006 Phys. Plasmas 13 063301
[39] Li H W, Kar S and Jiang P H 2013 Int. J. Quantum Chem. 113 1493
[40] Cardona J C and Sanz-Vicario J L 2008 J. Phys. B 41 055003
[41] Han H L, Zhong Z X, Zhang X Z and Shi T Y 2008 Phys. Rev. A 77 012721
[42] Gill J M, Martel P, Mínguez E, Rubiano J G, Rodríguez R and Ruano F H 2002 J. Quantum Spectrosc. Radiat. Transfer 75 539
[43] Li H W and Kar S 2012 Phys. Plasmas 19 073303
[44] Bhatia A K and Temkin A 1964 Rev. Mod. Phys. 36 1050
[45] Drake G W F 1978 Phys. Rev. A 18 820
[46] Yan Z C and Drake G W F 1996 Chem. Phys. Lett. 259 96
[47] Kar S and Ho Y K 2005 J. Phys. B 38 3299
[48] Kar S and Ho Y K 2005 Eur. Phys. J. D 35 453
[49] Jiang Z, Song X, Zhou L and Kar S 2017 Commun. Theor. Phys. 67 542
[50] Jiang Z, Zhang Y and Kar S 2015 Phys. Plasmas 22 052105
[51] Saha J K, Bhattacharyya S, Mukherjee T K and Mukherjee P K 2011 Int. J. Quantum Chem. 111 1819
[52] Cardona J C and SanzVicario J L 2008 J. Phys. B 41 055003
[53] Kar S and Ho Y K 2005 New J. Phys. 7 141
[54] Sullivan J P, Makochekanwa C, Jones A, Caradonna P and Buckman S J 2008 J. Phys. B 41 081001 and references therein
[55] Surdutovich E, Johnson J M, Kauppila W E, Kwan C K and Stein T S 2002 Phys. Rev. A 65 032713 and references therein
[1] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[2] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[3] Topological classification of periodic orbits in Lorenz system
Chengwei Dong(董成伟). Chin. Phys. B, 2018, 27(8): 080501.
[4] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[5] Odd-even harmonic emission from asymmetric molecules: Identifying the mechanism
Jianguo Chen(陈建国), Shujuan Yu(于术娟), Yanpeng Li(李雁鹏), Shang Wang(王赏), Yanjun Chen(陈彦军). Chin. Phys. B, 2017, 26(9): 094209.
[6] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
[7] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[8] Research on the discrete variational method for a Birkhoffian system
Liu Shi-Xing (刘世兴), Hua Wei (花巍), Guo Yong-Xin (郭永新). Chin. Phys. B, 2014, 23(6): 064501.
[9] Elastic fields around a nanosized elliptichole in decagonal quasicrystals
Li Lian-He (李联和), Yun Guo-Hong (云国宏). Chin. Phys. B, 2014, 23(10): 106104.
[10] Study of electronic structures and absorption bands of BaMgF4 crystal with F colour centre
Kang Ling-Ling(康玲玲), Liu Ting-Yu(刘廷禹), Zhang Qi-Ren(张启仁), Xu Ling-Zhi(徐灵芝), and Zhang Fei-Wu(张飞武) . Chin. Phys. B, 2011, 20(4): 047101.
[11] The energy levels of a two-electron two-dimensional parabolic quantum dot
Li Wei-Ping(李伟萍), Xiao Jing-Lin(肖景林),Yin Ji-Wen(尹辑文), Yu Yi-Fu(于毅夫), and Wang Zi-Wu(王子武). Chin. Phys. B, 2010, 19(4): 047102.
[12] Fourier transform technique in variational treatment of two-electron parabolic quantum dot
S. Şakiroĝlu, A. Yildiz, ü. Doĝan, K. Akgüngör, H. Epik, Y. Ergün, H. Sari and ì. Sökmen. Chin. Phys. B, 2009, 18(8): 3508-3516.
[13] Ground state energy of He isoelectronic sequence treated variationally via Hylleraas-like wavefunction
Serpil Şakiroĝlu, Kadir Akgüngör, and ìsmail Sökmen. Chin. Phys. B, 2009, 18(6): 2238-2243.
[14] Ground state energy of excitons in quantum dot treated variationally via Hylleraas-like wavefunction
S. Şakiroĝlu, ü. Doĝan, A. Yldz, K. Akgüngör, H. Epik, Y. Ergün, H. Sari, and ì. Sökmen. Chin. Phys. B, 2009, 18(4): 1578-1585.
[15] Extended Holstein polaron model for charge transfer in dry DNA
Liu Tao(刘涛), Wang Yi(王忆), and Wang Ke-Lin(汪克林). Chin. Phys. B, 2007, 16(1): 272-276.
No Suggested Reading articles found!